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Statistics 251/551 spring 2013
2013: Solutions to sheet 4

This homework will step you through the proof of Lemma 1 in the Jerrum
(1995) paper.1 I mostly use Jerrum’s notation, except that the number of colors
is q, not k.

The setting
The set of available “colors” is C = {1, 2, . . . , q}. We have a graph G on a
finite set of vertices V = {v1, . . . , vn} with edge set E = {e1, . . . , eR}. The
degree of a vertex v, denoted by deg(v), is the number of edges having v as one
of the endpoints. The neighborhood of vertex v is the set of vertices connected
to v by an edge,

N(v) := {w ∈ V : w 6= v and {v, w} ∈ E}.

A coloring of the graph is a map σ : V→ C. The coloring is proper if
the two vertices that make up each edge are assigned different colors, that is,
if

σ(v) /∈ {σ(w) : w ∈ N(v)} for every v ∈ V.

Denote the set of all proper colorings of the graph by S.

It is easy to see (by means of a greedy coloring method) that S is nonempty
if q > ∆. For q > 2∆ Jerrum’s algorithm generates observations from the
uniform distribution π on S by means of a Markov chain that converges very
rapidly towards π.

Transition probabilities
The transition probabilities P (σ, τ) for the chain are defined implicity by a
random method for producing a new coloring τ from a coloring σ.

First define a function TRY that generates a new coloring τ given a new
color c, a vertex v, and a current coloring σ. Define τ = TRY (c, v, σ) by

(i) if c ∈ {σ(w) : w ∈ N(v)} then τ = σ

(ii) if c /∈ {σ(w) : w ∈ N(v)} then τ(v) = c and τ(w) = σ(w) for all w not
equal to v.

In other words, TRY (c, v, σ) changes the color of v to c, provided the resulting
coloring is proper. If the proposed change would create an improper coloring,
σ is left unchanged.

1Available at http://onlinelibrary.wiley.com/doi/10.1002/rsa.3240070205/abstract.
You might need to access the site via http://sfx.library.yale.edu/sfx local/azlist .
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Here is the random procedure corresponding to P (σ, τ):

(a) Choose a vertex V at random from (the uniform distribution on) V.

(b) Choose a color C at random from (the uniform distribution on) C.

(c) Define τ = TRY (C, V, σ).

The coupling
Jerrum’s proof works by creating a coupling of a Markov chain {Yt : t ≥ 0}
with state space S and an arbitrary (but fixed) initial distribution µ and another
Markov chain {Xt : t ≥ 0} with state space S and initial distribution π, using
a method a little like the coupling used to prove the BLT.

Write infot for the information corresponding to everything that has hap-
pened up to the completion of step t. Initially X0 ∼ π and Y0 ∼ µ, indepen-
dently. After the completion of step t the Xt+1 and Yt+1 values are coupled as
follows

(a) Choose a new vertex Vt+1 at random from (the uniform distribution
on) V, independently of infot.

(b) Independently of Vt+1 and of infot, choose a color C at random from (the
uniform distribution on) C.

(c) Define Xt+1 = TRY (Ct+1, Vt+1, Xt). Based on infot and Vt+1, construct
a one-to-one function g : C→ C then define Yt+1 = TRY (g(Ct+1), Vt+1, Yt).

Remark. The random color g(Ct+1) is also uniformly distributed on C,
independently of infot and Vt+1. The change from Yt to Yt+1 still follows
the P transition probabilities; marginally, Y is still just a Markov chain
with initial distribution µ and transition matrix P .

If Xt(Vt+1) 6= Yt(Vt+1) then g is taken to be the identity map (that is, g(c) =
c for all c in C) and Yt+1 = TRY (Ct+1, Vt+1, Yt). The cleverness in Jerrum’s
algorithm comes from the choice of g for the cases where Xt(Vt+1) = Yt(Vt+1).

We need some notation for the case where Xt and Yt agree on the color
given to vertex Vt+1. After step t of the algorithm the vertex set V finds itself
partitioned into two subsets: At = {v ∈ V : Xt(v) = Yt(v)}, the set of vertices
where the two colorings agree; and Dt = {v ∈ V : Xt(v) 6= Yt(v)}, the set
where they disagree.

For the sake of notational clarity let me omit some subscripts t and t+ 1,
writing V for Vt+1 and so on. Write KX(V ) for {Xt(w) : w ∈ N(V )}, the
set of colors used by Xt for the neighbors of V . Define KY (V ) analogously.
Then CX(V ) := KX(V ) ∩Kc

Y (V ) is the set of colors used only by Xt for the
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neighbors of V and CY (V ) := KY (V ) ∩ Kc
X(V ) is the set of colors used only

by Yt for the neighbors of V .

The g is chosen in a way that discourages changes that would turn an
agreement at vertex V into a disagreement.

If either CX(V ) or CY (V ) is empty let g be the identity map on C.

If both CX(V ) and CY (V ) are nonempty the smaller of the two sets of colors
drives the construction. For concreteness suppose 0 < #CX(V ) ≤ #CY (V ),
so that the distinct colors in CX(V ) can be enumerated as c1, c2, . . . , cr and
the distinct colors in CY (V ) can be enumerated as c′1, c

′
2, . . . , c

′
r′, with r ≤ r′.

Define g by

g(ci) = c′i and g(c′i) = ci for i = 1, 2, . . . , r

g(c) = c otherwise

(KX∪KY

CX CY

KX ∩KY

)c

c1

cr

c1
´

cr
´

v

A D

The picture on the left represents the partition of C, with the dependence
on v = Vt+1 omitted, for the case 0 < #CX(v) ≤ #CY (v). The picture on the
right represents V, showing only the the neighbors of v when Xt(v) = Yt(v),
with t subscripts omitted.

If #CX(V ) > #CY (V ) > 0, reverse the roles of X and Y in the construction,
so that g maps CY (V ) onto a subset of CX(V ).

The meeting of the chains
At the random time T := min{t : Dt = ∅} the colorings agree for all vertices.
At that time both CX(v) and CY (v) are empty for every v in V. Subsequently,
the algorithm merely modifies the color scheme without creating any new dis-
agreements.

The details of Jerrum’s argument appear in the following Problems.

References

Jerrum, M. (1995). A very simple algorithm for estimating the number of
k-colorings of a low-degree graph. Random Structures and Algorithms 7(2),
157–165.
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Homework problems

Write ft for #Dt, the number of vertices where the colorings disagree after
completion of step t. The main idea is to show that Eft+1 ≤ (1−α)Eft where

α :=
q − 2∆

nq
> 0,

which will produce a rapidly decreasing bound on the total variation distance
between π and the distribution of Yt.

[1] (5 points) For each σ and τ in S show that P (σ, τ) = P (τ, σ). Deduce that the
uniform distribution π on S is the stationary distribution.

If P (σ, τ) > 0 with σ 6= τ then there must exist exactly one vertex v for
which σ(v) 6= τ(v). Of course neither σ(v) nor τ(v) can be included in the set
of colors used by both σ and τ for N(v). To get from σ to τ the algorithm
must select vertex v (probability n−1) and color τ(v) (probability q−1); to get
from τ to σ the algorithm must select vertex v and color σ(v). Both pairs of
choices have the same probability, (nq)−1.

Time reversibility forces the uniform distribution to be the stationary dis-
tribution, as in HW3.2(d).

[2] (5 points) Explain why

TVt := max
B⊆S
|P{Yt ∈ B} − π(B)| ≤ P{T > t}

Hint: The argument is similar to the one used for the proof of the BLT.

For each B ⊆ S,

|P{Yt ∈ B} − π(B)| = |P{Yt ∈ B} − P{Xt ∈ B}|
≤ |P{Yt ∈ B, T ≤ t} − P{Xt ∈ B, T ≤ t}|

+ |P{Yt ∈ B, T > t} − P{Xt ∈ B, T > t}|

From time T onwards the two chains stay the same; they give the same color
to each vertex. Thus the first term after the inequality equals zero. For the
other term note that

−P{T > t} ≤ P{Yt ∈ B, T > t} − P{Xt ∈ B, T > t} ≤ P{T > t},

which gives |P{Yt ∈ B, T > t} − P{Xt ∈ B, T > t}| ≤ P{T > t}, as in the
proof of the BLT. Some of you dervived only the weaker bounder 2P{T > t}.
Some of you only derived an upper bound for P{Yt ∈ B} − π(B). (Actually,
when paired with the analogous bound for B replaced by Bc, the one-sided
bound also leads to the desired two-sided bound.)
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[3] (10 points) Explain why T = min{t : ft = 0}

P{T > t} ≤ P{ft 6= 0} ≤ Eft.

Hint: The random variable ft takes only nonnegative integer values.

By definition, Dt 6= ∅ (implying ft > 0) for t < T . And, because Xt = Yt
for all t ≥ T , the set Dt stays empty from time T onwards. Consequently,
ft 6= 0 if and only if t < T . The first inequality is actually an equality:
P{T > t} ≤ P{ft 6= 0}. The second inequality follows by taking expectations
on both sides of I{ft ≥ 1} ≤ ft. Some of you failed to notice that ft = 0
for t ≥ T .

[4] (5 points) Explain why |ft+1 − ft| ≤ 1 always, with ft+1 ≤ ft if Vt+1 ∈ Dt and
ft+1 ≥ ft if Vt+1 ∈ At.

Once again abbreviate Vt+1 to V . At each step the X- and Y -colors can
changed only at vertex V . For an increase in the number of disagreements,
it must be that Xt(V ) = Yt(V ) but Xt+1(V ) 6= Yt+1(V ). For a decrease in
the number of disagreements, it must be that Xt(V ) 6= Yt(V ) but Xt+1(V ) =
Yt+1(V ). Problems [6] and [7] provide more details about when ft+1 = ft± 1.

[5] (5 points) For each vertex v, define

dt(v) :=

{
#(N(v) ∩ At) if v ∈ Dt

#(N(v) ∩Dt) if v ∈ At.

Equivalently, dt(v) is the number of edges (with v as one of the endpoints) that
join a point in At to a point in Dt. Explain why the total number of edges that
join a point in At to a point in Dt equals

mt :=
∑

v∈At

dt(v) =
∑

v∈Dt

dt(v).

The first expression for mt comes from working through the list of all the
vertices v in At while counting how many vertices in Dt are connected to each v
on the list. The second expression comes from working through the list of all
the vertices v in Dt while counting how many vertices in At are connected to
each v on the list.

[6] Consider the case where Vt+1 ∈ At. Abbreviate Vt+1 to V and Ct+1 to C.

(i) (5 points) Explain why ft+1 = ft if CX(V ) = CY (V ) = ∅.
If both CX(V ) and CY (V ) are empty then KX(V ) = KY (V ), that is, the

X- and Y -colorings agree for all the neighbors of V . The color Ct+1 is either
accepted or rejected by both chains. Both X and Y still give the same color
to vertex V .
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Without loss of generality suppose #CX(V ) ≤ #CY (V ) and CY (V ) 6= ∅ for the
rest of this problem. It is possible that CX(V ) is empty, which would make (ii)
a bit easier.

As I explained in class, the “Without loss of generality” is harmless if
we already know that Vt+1 = v, for a specific v in At. The analysis for
the case where #CX(v) > #CY (v) is essentially the same as for the case
#CY (v) ≥ #CX(v): one merely has to intechange the roles of X and Y .
However, the way the question was written did suggest that #CY (v) ≥ #CX(v)
for every v in At, which need not be true.

The following three parts should refer to Vt+1 equal to a (temporarily)
fixed v for which 0 < #CX(v) ≤ #CY (v).

(ii) (15 points) If C /∈ CY (V ), show that ft+1 = ft. Hint: Consider separately the
cases where C belongs to (KX(V ) ∪KY (V ))c or KX(V ) ∩KY (V ) or CX(V ).

If C ∈ (KX(v) ∪KY (v))c then neither chain has color C used for any of
the neighbors of v and g(C) = C, resulting in Xt+1(v) = C = Yt+1(v).

If C ∈ KX(v) ∩KY (v) then g(C) = C and neither chain accepts color C,
leaving Xt+1(v) = Xt(v) = Yt(v) = Yt+1(v).

If C ∈ CX(v) then chain X rejects C as one of the colors it already has
for a neighbor of v. Chain Y rejects the color g(C), which belongs to CY (v)
because of the way the g was constructed.

(KX∪KY

CX CY

KX ∩KY

)c

c1

cr

c1
´

cr
´

(iii) (5 points) Explain why ft+1 might equal 1 + ft if C ∈ CY (V ).

If C = c′i for some i ≤ r then g(C) = ci ∈ CX(v). Both chains accept the
new color for vertex v and ft+1 = ft. However if C = c′i for some r < i ≤ r′

then the Y -chain rejects the color C but the X-chain accepts g(C) = c′i because
none of the neighbors of v have X-color c′i. The result is a different coloring
of vertex v by the two chains.
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(iv) (5 points) Explain why #CY (V ) ≤ dt(V ) when V ∈ At.

Again argue for V equal to a fixed v in At. The colors in CY (v) can appear
only on (a subset of the) neighbors of v that lie in Dt. That is, for each color
in CY (v) there is at least one edge from v to a neighbor in Dt. The number
of colors in CY (v) cannot exceed dt(V ), the total number of edges from v to
neighbors in Dt. (A similar argument gives #CX(v) ≤ dt(v).)

v

A D

(v) (10 points) Deduce that

P{ft+1 = 1 + ft | infot} ≤ P{V ∈ At, C ∈ CY (V ) | infot} ≤
mt

nq
.

Explain your reasoning in detail.

It is better to argue in the following way. First condition on Vt+1. By
Problem [4], only if v ∈ At can we have ft+1 = ft + 1.

P{ft+1 = 1 + ft | infot}
= P{ft+1 = 1 + ft, Vt+1 ∈ At | infot}
=
∑

v∈At

P{Vt+1 = v | infot}P{ft+1 = 1 + ft | infot, Vt+1 = v}<1>

For every v in V the probability P{Vt+1 = v | infot} is equal to n−1. For
the analysis of P{ft+1 = 1 + ft | infot, Vt+1 = v} suppose, “without loss of
generality”, that 0 < #CX(v) ≤ #CY (v). Then

P{ft+1 = 1 + ft | infot, Vt+1 = v}
≤ P{Ct+1 ∈ CY (v) | infot, Vt+1 = v} using without loss of generality . . .

≤ dt(v)/q by (iv).

Substitute into <1> to deduce that

P{ft+1 = 1 + ft | infot} ≤
∑

v∈At

n−1dt(v)/q = (nq)−1mt.

Some of you claimed that the events {Vt+1 ∈ At} and {Ct+1 ∈ C(Vt+1)} are
independent, which is false. Conditioning on Vt+1 = v ∈ At does let you
focus only on the variability in Ct+1. Some of you also claimed that the
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event {VT+1 ∈ At, Ct+1 ∈ C(Vt+1)} doesn’t depend on infot, which is also false
because the sets At and Dt are defined using infot.

[7] Consider the case where Vt+1 ∈ Dt. Abbreviate Vt+1 to V and Ct+1 to C.

(i) (5 points) For each v in Dt explain why

P(ft+1 = ft − 1 | V = v, infot) ≥ P(C /∈ KX(v) ∪KY (v) | V = v, infot)

If Ct+1 is in neither the KX(v) nor the KY (v) list then g(Ct+1) = Ct+1

and both chains accept the new color for vertex v. If v ∈ Dt the number of
disagreements is decreased by 1.

(ii) (5 points) Explain why # (KX(v) ∪KY (v)) ≤ 2∆ − dt(v) for all v in Dt.
Hint: What is the largest number of distinct colors that can be contributed
by N(v) ∩Dt?

v

A D

By definition, dt(v) = # (N(v) ∩ At) and #N(v) ≤ ∆. Thus

# (N(v) ∩Dt) = #N(v)−# (N(v) ∩ At) ≤ ∆− dt(v).

The vertices in N(v) ∩ Dt can contribute at most 2 × # (N(v) ∩Dt) distinct
colors to KX(v)∪KY (v). The vertices in N(v)∩At can contribute at most dt(v)
distinct colors. Together they contribute at most 2 × (∆ − dt(v)) + dt(v) ≤
2∆− dt(v) colors.

Many of you argued that the vertices in N(v) ∩ At all carry colors that
appear in KX(v) ∩ KY (v). However, there is no guarantee that each vertex
in N(v) ∩ At has a distinct color. In the extreme case, both X and Y could
use a single color for every vertex in N(v)∩At. The number of colors used for
vertices in N(v) ∩ At need not equal dt(v) = #(N(v) ∩ At).

(iii) (5 points) Deduce that

P(ft+1 = ft − 1 | infot) ≥ αft +
mt

nq

Again condition on Vt+1. If Vt+1 = v ∈ Dt and Ct+1 /∈ KX(v) ∪ KY (v)
then both X and Y accept the new color, creating one fewer disagreement.
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Thus

P(ft+1 = ft − 1 | infot)

≥ P{V ∈ Dt, C /∈ KX(V ) ∪KY (V ) | infot}
=
∑

v∈Dt

P{V = v | infot}P{C /∈ KX(v) ∪KY (v) | infot, V = v}

≥ n−1
∑

v∈Dt

(
1− #(KX(v) ∪KY (v))

q

)
≥ 1

n

∑
v∈Dt

(
1− 2∆− dt(v)

q

)
≥ 1

n

(
1− 2∆

q

)
ft +

mt

nq
because ft = #Dt

= αft +
mt

nq

Some of you failed to condition properly, treating V (or v) as random in one line
and fixed in the next, with summations over v ∈ Dt appearing out of nowhere.
Some of you also confused I{C /∈ KX(v) ∪KY (v))} with # (KX(v) ∪KY (v)).

[8] Combine the last two results.

(i) (5 points) Show that

E (ft+1 − ft | infot) = P{ft+1 = 1 + ft | infot} − P(ft+1 = ft − 1 | infot)

≤ −αft
From [6](v) and [7](iii),

P{ft+1 = 1 + ft | infot} − P(ft+1 = ft − 1 | infot) ≤
mt

nq
−
(
αft +

mt

nq

)
(ii) (5 points) Deduce that Eft+1 ≤ (1− α)Eft for all t.

Multiply both sides of E (ft+1 − ft | infot) ≤ −αft by P{infot} then sum
over all possible values for infot to deduce that E(ft+1 − ft) ≤ −αEft. Some
of you failed to distinguish between E (ft+1 − ft | infot) and E (ft+1 − ft).

(iii) (5 points) Deduce that

Eft ≤ (1− α)tEf0 ≤ n(1− α)t.

Notice that the upper bound does not depend on µ.

Use f0 ≤ #V = n together with recursive appeals to the bound from (ii).

(iv) (5 points) Conclude, via Problems [2] and [3] that

TVt ≤ n(1− α)t

Remark. You could solve to find how large t must be in order to make
TVt ≤ ε, for any given ε > 0.


