Statistics 251/551 spring 2013
2013: Solutions to sheet 4

This homework will step you through the proof of Lemma 1 in the Jerrum
(1995) paper.t I mostly use Jerrum’s notation, except that the number of colors
1 q, not k.

The setting

The set of available “colors” is € = {1,2,...,q}. We have a graph G on a
finite set of vertices V. = {vy,...,v,} with edge set € = {ey,...,eg}. The
degree of a vertex v, denoted by deg(v), is the number of edges having v as one
of the endpoints. The neighborhood of vertex v is the set of vertices connected
to v by an edge,

Nw):={weV:w#wvand {v,w} € E}.

A coloring of the graph is a map o : 'V — C. The coloring is proper if
the two vertices that make up each edge are assigned different colors, that 1is,
of

o(v) ¢ {o(w) : w e N(v)} for every v € V.

Denote the set of all proper colorings of the graph by S.

It is easy to see (by means of a greedy coloring method) that 8 is nonempty
if g > A. For q > 2A Jerrum’s algorithm generates observations from the
uniform distribution m on & by means of a Markov chain that converges very
rapidly towards .

Transition probabilities
The transition probabilities P(o,T) for the chain are defined implicity by a
random method for producing a new coloring T from a coloring o.

First define a function TRY that generates a new coloring T given a new
color ¢, a vertex v, and a current coloring o. Define T = TRY (¢,v,0) by

(i) if c € {o(w) : w € N(v)} then T =0
(i1) if ¢ ¢ {o(w) : w € N(v)} then 7(v) = ¢ and T7(w) = o(w) for all w not

equal to v.

In other words, TRY (¢,v, o) changes the color of v to ¢, provided the resulting
coloring is proper. If the proposed change would create an improper coloring,
o s left unchanged.

! Available at http://onlinelibrary.wiley.com/doi/10.1002/rsa. 3240070205 /abstract.
You might need to access the site via http://sfx.library.yale.edu/sfx_local/azlist .



Here is the random procedure corresponding to P(o,T):

(a) Choose a vertex 'V at random from (the uniform distribution on) V.

(b) Choose a color C' at random from (the uniform distribution on) C.

(¢) Define T =TRY (C,V,0).

The coupling

Jerrum’s proof works by creating a coupling of a Markov chain {Y; : t > 0}
with state space 8 and an arbitrary (but fived) initial distribution p and another
Markov chain {X; : t > 0} with state space 8 and initial distribution w, using
a method a little like the coupling used to prove the BLT.

Write info; for the information corresponding to everything that has hap-
pened up to the completion of step t. Initially Xog ~ m and Yy ~ p, indepen-
dently. After the completion of step t the X;11 and Y11 values are coupled as
follows

(a) Choose a new wvertex Viyy at random from (the uniform distribution
on) 'V, independently of infoy.

(b) Independently of Vi11 and of info,, choose a color C at random from (the
uniform distribution on) C.

(c) Define Xy = TRY (Ciq, Vivr, Xy). Based on info, and Vi1, construct
a one-to-one function g : € — € then define Vi1 = TRY (9(Cyi1), Vit1, Yr).

Remark. The random color g(Cyy1) is also uniformly distributed on C,
independently of info; and Viq1. The change from Yy to Yiyq still follows
the P transition probabilities; marginally, Y is still just a Markov chain
with initial distribution p and transition matrixz P.

If Xi(Vig1) # Yi(Viga) then g is taken to be the identity map (that is, g(c) =
¢ for all ¢ in C) and Y41 = TRY (Cyy1,Viy1,Y:). The cleverness in Jerrum’s
algorithm comes from the choice of g for the cases where Xy(Vii1) = Yi(Vig1).

We need some notation for the case where X; and Y, agree on the color
given to vertex Viyq. After step t of the algorithm the vertex set 'V finds itself
partitioned into two subsets: Ay = {v € V: Xy(v) = Y;i(v)}, the set of vertices
where the two colorings agree; and Dy = {v € V : X;(v) # Yi(v)}, the set
where they disagree.

For the sake of notational clarity let me omit some subscripts t and t + 1,
writing V' for Viiy and so on. Write Kx (V') for {X;(w) : w € N(V)}, the
set of colors used by X; for the neighbors of V. Define Ky (V') analogously.
Then Cx(V) := Kx (V)N K¢ (V) is the set of colors used only by X, for the



neighbors of V. and Cy (V) := Ky (V) N K% (V) is the set of colors used only
by Y; for the neighbors of V.

The g s chosen in a way that discourages changes that would turn an
agreement at vertex V into a disagreement.

If either Cx (V') or Cy (V') is empty let g be the identity map on C.

If both Cx (V') and Cy (V') are nonempty the smaller of the two sets of colors
drives the construction. For concreteness suppose 0 < #Cx (V) < #Cy(V),

so that the distinct colors in Cx(V) can be enumerated as ¢y, ¢ca, ..., ¢, and
the distinct colors in Cy (V') can be enumerated as ¢y, c,, ..., c.., withr <r'.
Define g by

g(c;)=c and g(c})) =¢;  fori=1,2,...,r

glc)=c otherwise
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The picture on the left represents the partition of €, with the dependence
on v =V, omitted, for the case 0 < #Cx(v) < #Cy (v). The picture on the
right represents V, showing only the the neighbors of v when X,(v) = Y;(v),
with ¢ subscripts omitted.

If #Cx (V) > #Cy (V') > 0, reverse the roles of X and Y in the construction,
so that g maps Cy (V') onto a subset of Cx (V).

The meeting of the chains

At the random time T := min{t : D; = ()} the colorings agree for all vertices.
At that time both Cx(v) and Cy(v) are empty for every v in V. Subsequently,
the algorithm merely modifies the color scheme without creating any new dis-
agreements.

The details of Jerrum’s argument appear in the following Problems.
References
Jerrum, M. (1995). A wvery simple algorithm for estimating the number of

k-colorings of a low-degree graph. Random Structures and Algorithms 7(2),
157-165.
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HOMEWORK PROBLEMS
Write f; for #D,, the number of vertices where the colorings disagree after
completion of step t. The main idea is to show that Efi 1 < (1 — «)Ef, where

g —2A
T ng

Q: > 0,
which will produce a rapidly decreasing bound on the total variation distance
between T and the distribution of Y.

(5 points) For each o and T in 8§ show that P(o,7) = P(7,0). Deduce that the
uniform distribution ™ on 8 is the stationary distribution.

If P(o,7) > 0 with o # 7 then there must exist exactly one vertex v for
which o(v) # 7(v). Of course neither o(v) nor 7(v) can be included in the set
of colors used by both o and 7 for N(v). To get from o to 7 the algorithm
must select vertex v (probability n~!) and color 7(v) (probability ¢~!); to get
from 7 to o the algorithm must select vertex v and color o(v). Both pairs of
choices have the same probability, (ng)™!.

Time reversibility forces the uniform distribution to be the stationary dis-
tribution, as in HW3.2(d).

(5 points) Explain why

TV, := max IP{Y; € B} —n(B)| <P{T >t}

Hint: The argument is similar to the one used for the proof of the BLT.
For each B C 8,

[P{Y; € B} —m(B)| = [P{Y; € B} —P{X, € B}
<|P{Y, e B,T <t} —P{X, € B,T <t}
+ |P{Y; € B,T >t} —P{X, € B, T > t}|

From time T onwards the two chains stay the same; they give the same color
to each vertex. Thus the first term after the inequality equals zero. For the
other term note that

—P{T >t} <P{Y,e BT >t} —P{X, € B,T >t} <P{T > t},

which gives |P{Y; € B, T > t} —P{X, € B,T > t}| < P{T > t}, as in the
proof of the BLT. Some of you dervived only the weaker bounder 2P{T > t}.
Some of you only derived an upper bound for P{Y; € B} — n(B). (Actually,
when paired with the analogous bound for B replaced by B¢, the one-sided
bound also leads to the desired two-sided bound.)
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(10 points) Explain why T = min{t : f; = 0}
P{T >t} < P{f, # 0} < Ef..

Hint: The random variable f, takes only nonnegative integer values.

By definition, D; # () (implying f; > 0) for t < T. And, because X; =Y,
for all t > T, the set D, stays empty from time T onwards. Consequently,
fi # 0 if and only if ¢ < T. The first inequality is actually an equality:
P{T >t} <P{f; # 0}. The second inequality follows by taking expectations
on both sides of I{f; > 1} < f;. Some of you failed to notice that f; = 0
fort>T.

(5 points) Explain why |fi1 — fi] <1 always, with fi1 < f; if Visq € Dy and
fev1 = fi if Viyr € As

Once again abbreviate V;,1 to V. At each step the X- and Y-colors can
changed only at vertex V. For an increase in the number of disagreements,
it must be that X;(V) = (V) but X;41(V) # Y41 (V). For a decrease in
the number of disagreements, it must be that X, (V') # Y;(V) but X, 1(V) =
Y;11(V). Problems [6] and [7] provide more details about when f;, = f; £ 1.

(5 points) For each vertex v, define

oy {FNNA) ifveD,
BT #N@)N Dy ifv e A,
Equivalently, d,(v) is the number of edges (with v as one of the endpoints) that
join a point in Ay to a point in D;. FExplain why the total number of edges that
join a point in A, to a point in Dy equals

my = ZUGAt di(v) = Z’UEDt di(v).

The first expression for m; comes from working through the list of all the
vertices v in A; while counting how many vertices in D; are connected to each v
on the list. The second expression comes from working through the list of all
the vertices v in D; while counting how many vertices in A; are connected to
each v on the list.

Consider the case where Viyq € A;. Abbreviate Vi, to V' and Cyiq to C.

(1) (5 points) Explain why fiy1 = fi if Cx(V) = Cy (V) = 0.

If both Cx (V') and Cy (V') are empty then Kx (V) = Ky (V), that is, the
X- and Y-colorings agree for all the neighbors of V. The color Cy;; is either
accepted or rejected by both chains. Both X and Y still give the same color
to vertex V.



Without loss of generality suppose #Cx (V) < #Cy (V') and Cy (V') # O for the
rest of this problem. It is possible that Cx (V') is empty, which would make (ii)
a bit easier.

As T explained in class, the “Without loss of generality” is harmless if
we already know that V;,; = wv, for a specific v in A;. The analysis for
the case where #Cx(v) > #Cy(v) is essentially the same as for the case
#Cy (v) > #Cx(v): one merely has to intechange the roles of X and Y.
However, the way the question was written did suggest that #Cy (v) > #Cx(v)
for every v in A;, which need not be true.

The following three parts should refer to Vi1 equal to a (temporarily)
fixed v for which 0 < #Cx(v) < #Cy(v).

(i) (15 points) If C ¢ Cy(V), show that fir1 = fi. Hint: Consider separately the
cases where C' belongs to (Kx(V)U Ky (V) or Kx (V)N Ky (V) or Cx(V).

If C € (Kx(v)UKy(v))® then neither chain has color C used for any of
the neighbors of v and ¢(C) = C, resulting in X y1(v) = C = Y11(v).

If C € Kx(v)N Ky(v) then g(C') = C and neither chain accepts color C,
leaving X;41(v) = Xi(v) = Yi(v) = Yipa (v).

If C € Cx(v) then chain X rejects C' as one of the colors it already has

for a neighbor of v. Chain Y rejects the color g(C), which belongs to Cy (v)
because of the way the g was constructed.
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(iii) (5 points) Explain why fii1 might equal 1+ f; if C € Cy (V).

If C' = ¢, for some i < r then g(C) = ¢; € Cx(v). Both chains accept the
new color for vertex v and fiy1 = f;. However if C' = ¢ for some r < ¢ <7’
then the Y'-chain rejects the color C' but the X-chain accepts g(C') = ¢} because
none of the neighbors of v have X-color ¢;. The result is a different coloring
of vertex v by the two chains.



(iv) (5 points) Explain why #Cy (V) < di(V) when V € A,;.

Again argue for V' equal to a fixed v in A;. The colors in Cy (v) can appear
only on (a subset of the) neighbors of v that lie in D;. That is, for each color
in Cy (v) there is at least one edge from v to a neighbor in D;. The number
of colors in Cy(v) cannot exceed d;(V'), the total number of edges from v to
neighbors in D;. (A similar argument gives #Cx (v) < d;(v).)

A D

(v) (10 points) Deduce that

P{fis1 =1+ fi | info,} <P{V € A;,C € €y (V) | info,} < e

nq
Fxplain your reasoning in detail.
It is better to argue in the following way. First condition on Vi;;. By

Problem [4], only if v € A; can we have f,1 = f; + 1.

P{ft—i—l =1 + ft | il’lfOt}
=P{fiy1 =1+ fi,Viq1 € A; | infos}

<1> - ZveAt P{V,41 = v | info, }P{fis1 = 1 + f, | info,, Visy = v}
For every v in V the probability P{V,,; = v | info;} is equal to n~!'. For

the analysis of P{f;y1 = 1 + f; | info;, Vii1 = v} suppose, “without loss of
generality”, that 0 < #Cx(v) < #Cy(v). Then

P{fiy1 = 1+ f; | info,, Vig1 = v}
< P{Cyy1 € Cy(v) | infoy, Viy1 = v} using without loss of generality . ..

<di(v)/q by (iv).
Substitute into <1> to deduce that
P{frr =1+ fi [info} <3 n”ldy(v)/q = (ng)'my.

Some of you claimed that the events {V;1; € A;} and {Cyyq € C(Viy1)} are
independent, which is false. Conditioning on V.1 = v € A; does let you
focus only on the variability in C},;. Some of you also claimed that the



event {Vry1 € Ay, Ciq € C(Vig1)} doesn’t depend on info;, which is also false
because the sets A; and D; are defined using info;,.

[7] Consider the case where Vi1 € D;. Abbreviate Vi1 to V and Cy 1 to C.
(i) (5 points) For each v in Dy explain why

P(fiy1=fi—1|V =w,info;) > P(C ¢ Kx(v) UKy (v) | V = v,info;)

If Cyi1 is in neither the Kx(v) nor the Ky (v) list then ¢(Cir1) = Cipa
and both chains accept the new color for vertex v. If v € D, the number of
disagreements is decreased by 1.

(ii) (5 points) Explain why # (Kx(v) U Ky(v)) < 2A — dy(v) for all v in D.
Hint: What is the largest number of distinct colors that can be contributed
by N(v)N D, ?

A D

By definition, di(v) = # (N(v) N A;) and #N(v) < A. Thus
# (N(v) N Dy) = #N(v) —# (N(v) N A) < A —di(v).

The vertices in N(v) N D, can contribute at most 2 x # (N(v) N D;) distinct
colors to Kx(v)UKy (v). The vertices in N(v)NA; can contribute at most d;(v)
distinct colors. Together they contribute at most 2 x (A — dy(v)) + di(v) <
2A — dy(v) colors.

Many of you argued that the vertices in N(v) N A; all carry colors that
appear in Kx(v) N Ky(v). However, there is no guarantee that each vertex
in N(v) N A; has a distinct color. In the extreme case, both X and Y could
use a single color for every vertex in N(v) N A;. The number of colors used for
vertices in N(v) N A; need not equal di(v) = #(N(v) N Ay).

(iii) (5 points) Deduce that

: m
P(fii1 = fr — 1 | info;) > af; + th

Again condition on Vi ;. If Viuy = v € Dy and Ciyy € Kx(v) U Ky (v)
then both X and Y accept the new color, creating one fewer disagreement.



Thus

P(fiy1 = fi — 1| infoy)
>P{VeD,C¢Kx(V)UKy(V) | info;}

- ZveDt P{V = v | info, }P{C ¢ Kx(v) U Ky(v) | info,, V' = v}
>aty (1 ~ #(Kx(v)u l@(u)))

q
1 2A — dt(’U)
Z E ZveDt (1 B q )

1 2A
> — (1 — —) fi + U because f; = #D;
n q nq

m
=afi+—
ng

Some of you failed to condition properly, treating V' (or v) as random in one line
and fixed in the next, with summations over v € D; appearing out of nowhere.
Some of you also confused I{C ¢ Kx(v) U Ky (v))} with # (Kx(v) U Ky (v)).
/8] Combine the last two results.
(i) (5 points) Show that
]E (]lf+1 — ft | inf()t) = P{ff+l = 1 + ff | inf()t} — ]:P)((f;g+1 = ft — 1 | illf()t)
< —afy
From [6](v) and [7](iii),
. ) m m
P{fis1 =1+ f | info,} — P(fix1 = fi — 1| info,) < — — (aft . _t>
ng ng
(i) (5 points) Deduce that Efi 1 < (1 — a)Ef; for all t.

Multiply both sides of E (fiy1 — fi | info;) < —af; by P{info;} then sum
over all possible values for info; to deduce that E(f;11 — f;) < —aEf;. Some
of you failed to distinguish between E (f;11 — f; | info;) and E (fi11 — fi).

(iii) (5 points) Deduce that
Ef, <(1—a)Efy <n(l—a).
Notice that the upper bound does not depend on .
Use fo < #V = n together with recursive appeals to the bound from (ii).
(iv) (5 points) Conclude, via Problems [2] and [3] that
TV, < n(1 —a)’

Remark. You could solve to find how large t must be in order to make
TV, <, for any given ¢ > 0.



