
Statistics 251/551 spring 2013
2013: Solutions to sheet 5

If you are not able to solve a part of a problem, you can still get credit for later

parts: Just assume the truth of what you were unable to prove in the earlier part.

[1] Suppose σ and τ are stopping times for a “flow of information” W0,W1, . . . .
Which of the following are necessarily stopping times? In each case give a
proof or counterexample.

(i) (5 points) max(σ, τ)

(ii) (5 points) min(σ, τ)

(iii) (5 points) τ + σ

(iv) (5 points) (τ − σ)+ := max(τ − σ, 0)

First note that if τ is a stopping time then, for each integer k, the indicator

I{τ ≤ k} =
∑

i≤k
I{τ = i}

is also a function of W0,k. Conversely, if I{τ ≤ k} = gk(W0,k) for each k then
I{τ = k} = gk(W0,k) − gk−1(W0,k−1), which is also a function of W0,k. (For
k = 0 interpret gk−1 as the zero function.) That is, τ is a stopping time if and
only if I{τ ≤ k} is a function of W0,k for each integer k.

Back to the Problem. For each integer k,

I{max(σ, τ) ≤ k} = I{σ ≤ k}I{τ ≤ k}
I{min(σ, τ) ≤ k} = max (I{σ ≤ k}, I{τ ≤ k})

I{τ + σ = k} =
∑k

j=0
I{σ = j}I{τ = k − j}.

In each case, the expression on the right-hand side only involves W0,k.

As a general proposition, (τ − σ)+ need not be a stopping time. For
example, suppose τ = min{n : Wn ≥ 1} with Wn as in the next Problem
and σ is always equal to 1, a trivial sort of stopping time. Then

I{(τ − σ)+ = 1} = I{τ = 2} = I{W0 < 1,W1 < 1,W2 ≥ 1},

which clearly depends on more than W0 and W1. There are however some pairs
of stopping times σ′ and τ ′ for which (τ ′ − σ′)+ is a stopping time: consider
τ ′ = σ + τ and σ′ = σ, for example.



Some of you argued (incorrectly, or at least incompletely) as follows in
part (i) for the time γ := max(σ, τ). “Either γ = σ so that {γ = k} = {σ = k},
which only depends on W0,k, or γ = τ so that {γ = k} = {τ = k}, which also
only depends on W0,k.” The error lies in the hidden effects of the event {σ ≥ τ}
and its complement. Indicator functions make the difficulty more visible:

I{γ = k} = I{σ = k}I{σ ≥ τ}I{τ = k}I{σ < τ}.

One way to complete the argument is to expand the right-hand side as

I{σ = k}
∑

i≤k
I{τ = i}+ I{τ = k}

∑
i<k

I{σ = i}

then argue that all the indicators can be written as functions of W0,k. Effec-
tively you need something like the first paragraph of my solution.

[2] Consider a random walk on the integers Z defined by Wn = W0 +
∑

1≤i≤n ξi
where W0, ξ1, ξ2, . . . are independent random variables with

P{ξi = +1} = 1/2 = P{ξi = −1}.

For each m in Z define

σm =

{
min{n ∈ N : Wn = m}
+∞ if Wn 6= m for all n ∈ N

and τ := min(σ0, σN) where N := a+b, with a and b positive integers. As in the
class presentation of the gambler’s ruin problem, write V for the event {τ =
σN}, which corresponds to A winning. Write θi for P(V | W0 = i) and λi
for E(τ | W0 = i) if 0 ≤ i ≤ N .

This Problem started out as something more complicated (with p 6= 1/2),
which I decided to simplify. Unfortunately (or fortunately, depending on how
you look at it), I forgot about Chang page 126.

(i) (10 points) Show that W0,W1, . . . is a martingale. Use the optional sampling
theorem for martingales to show that θa = a/N . (Don’t forget to start with
τ ∧ k for a positive integer k.)

For each n and i = (i0, i1, . . . , in),

E(Wn+1 | W0,n = i) = i0 + · · ·+ in + E(ξn+1 | W0,n = i)



The last term is zero: the conditioning is irrelevant because ξn+1 is independent
of W0, ξ1, . . . , ξn and Eξn+1 = 0.

For each integer k,

a = EaW0 = EWτ∧k

= EaWτ I{k ≥ τ = σ0}+ EaWτ I{k ≥ τ = σN}+ EaWτ I{k < τ}

In the last line the first term equals 0 × Pa{k ≥ τ}V c = 0. The second term
equals N × Pa{k ≥ τ}V , which tends to NPaV = Nθa as k → ∞. The
third term is bounded (in absolute value) by NP{κ < τ}, which tends to zero
as k →∞.

(ii) (10 points) Define Zn := W 2
n − n. Show that Z0, Z1, . . . is a martingale.

For each n ≥ 0,

E(Zn+1 | W0,n) = E
(
(Wn + ξn+1)

2 − n− 1 | W0,n)
)

= W 2
n − n+ 2WnE(ξn+1 | W0,n) + E(ξ2n+1 | W0,n)− 1

The Wn’s are treated like constants when conditioning on W0,n. Again the
conditioning is irrelevant for the other terms in the last line, which therefore
reduces to

Zn + (2Wn × 0) + 1− 1 = Zn.

As some of you noted, {Zn} is also a martingale for the flow of informa-
tion Z0, Z1, . . . .

(iii) (10 points) Use the optional sampling theorem for martingales to show that
a2 = N2θa − λa then deduce that λa = ab. Hint: Zτ∧k = W 2

τ∧k − τ ∧ k.

Start from

a2 = EaZ0 = EaZτ∧k = EaW 2
τ∧k − Ea(τ ∧ k).

It is better to split the Zτ∧k into a difference of two terms before decomposing τ
as in part (i). Otherwise you will end up having to explain why kPa{k < τ}
tends to zero as k tends to infinity.

First note that

Ea(τ ∧ k) = EaW 2
τ∧k − a2



The quantity on the left-hand side increases to λa as k goes to infinity. Now
decompose τ as in part (i) to rewrite EaW 2

τ∧k as

Ea02I{k ≥ τ = σ0}+ EaN2I{k ≥ τ = σN}+ EaW 2
k I{k < τ}

The first term is zero; the second equals N2PaV ∩{τ ≤ k}, which tends to N2θa
as k → ∞; the third term is bounded by N2Pa{τ > k}, which tends to zero.
In the limit we have

λa = N2θa − a2 = Na− a2 = ba.

(iv) (10 points) Write δi for λi−λi−1. Use Markov chain methods to show that δi+1 =
δi − 2 for i = 1, 2, . . . , N − 1.

For 0 < i < N , conditioning on the first step gives

λi = Eiτ = 1 + 1
2
λi+1 + 1

2
λi−1

which rearranges to

1
2
(λi − λi−1) = 1 + 1

2
(λi+1 − λi).

Note also that λ0 = λN = 0.

(v) (10 points) Show that λi =
∑i

j=1 δj = iδ1 − (i − 1)i for 1 ≤ i ≤ N . Deduce
that λi = i(N − i) for 0 ≤ i ≤ N , in agreement with (iii).

At this point I expected you to solve the difference equations to determine
the δi’s and then recover (by a method different from part (iii)) the solution
for the λi’s. Many of you actually used λa = ab in order to find the δi’s, which
made the whole exercise rather pointless as an alternative derivation.

Here is what I intended. Repeated substituion gives δi+1 = δ1 − 2i for
1 ≤ i ≤ N − 1 and

λi − λ0 =
∑i

j=1
δj = iδ1 − 2

∑
1≤j≤i

(j − 1).

In particular, for i = N we get

0 = λN − 0 = Nδ1 − (N − 1)N,

which implies δ1 = N − 1 and λi = i(N − 1)− i(i− 1) = i(N − i).


