
Statistics 251/551 spring 2013
2013: Solutions to sheet 6

If you are not able to solve a part of a problem, you can still get credit for later
parts: Just assume the truth of what you were unable to prove in the earlier
part.

[1] (15 points) Suppose

(a) S0, S1, . . . is a supermartingale for a flow of information W0,W1, . . .

(b) σ and τ are stopping times for which 0 ≤ σ ≤ τ ≤ N , where N is a fixed
(finite) positive integer

(c) B is a nonnegative random variable for which BI{σ = j} depends only
on W0,j for 0 ≤ j ≤ N . That is,

B =
∑

0≤j≤N
bj(W0,j)I{σ = j}

for some nonnegative bj functions.

Show that ESσB ≥ ESτB. Explain each step in your reasoning. Hint: Write
E(Sτ − Sσ)B as a double sum over t (for the increments) and j (for the value
of σ).

As for the proof of optional stopping, write ∆t for St − St−1. Then

E(Sσ − Sτ )B =
∑N

t=1
E∆t (I{t ≤ σ} − I{t ≤ τ})B

= −
∑N

t=1

∑N

j=0
E∆tI{τ ≥ t > σ = j}bj(W0,j)

Only terms with j < t can give a nonzero value for I{τ ≥ t > σ = j}. Inside
the expectations, ∆t is always multiplied by the nonnegative function

I{τ ≥ t > σ = j}bj(W0,j = (1− I{τ ≤ t− 1}) I{t− 1 ≥ σ = j}bj(W0,j),

a product of three terms that only depend on W0,t−1. The supermartingale
property shows that the resulting expected values are all ≤ 0.

Many of you failed to treat σ and τ as random, writing things like

E
∑N−σ

t=0
(. . . ) =

∑N−σ

t=0
E(. . . ),



which leaves the right-hand side random. You might find it helpful to ponder
an analogous mistake in Calculus:∫ 1

0

x2 dx = x

∫ 1

0

x dx = x/2 ??????????

Why can’t an x be taken outside the integral?

[2] (10 points) Near the top of page 2 of the optimal.pdf handout I asserted that
the Y process defined at the bottom of page 1 is actually the smallest super-
martingale for which Yt ≥ Zt for each t. Prove that fact.

Suppose W1,W2, . . . ,WN is a supermartingale with Wt ≥ Zt for all t. By
construction, WN ≥ YN = ZN . Then work backwards inductively: if Wi ≥ Yi
for all i such that t < i ≤ N then Wt+1 ≥ Yt+1 and

Wt ≥ E(Wt+1 | Z1,t) ≥ E(Yt+1 | Z1,t),

the first inequality coming from the supermartingale property for W , the sec-
ond from the inductive assumption that Wt+1 ≥ Yt+1. Then use the fact that
Wt ≥ Zt to deduce Wt ≥ max(Zt,E(Yt+1 | Z1,t)).

Many of you tried to argue by contradiction, starting from an assumption
that Y is not the smallest supermartingale for which Yt ≥ Zt for all t. You
then incorrectly claimed that there must exist another supermartingale W for
which Yt > Wt ≥ Zt for all t. This claim is not the negation of the assertion
“Wt ≥ Yt for all t if W is a supermartingale with Wt ≥ Zt for all t”.

[3] In class I discussed the simple example where Z1, . . . , ZN are independent ran-
dom variables, each distributed Uniform(0,1), and we seek a stopping time σ
for which EZσ is maximized. Write MN for maxi≤N Zi.

Oh bother! The symbol M was already being used for the martingale Y·∧τ .
To avoid further confusion I’ll write M∗

N for maxi≤N Zi.

(i) (10 points) Express EM∗
N as a function of N .

EMn =

∫ 1

0

P{maxi≤N Zi > y} dy =

∫ 1

0

(1− yn) dy =
N

N + 1

It was also OK to just remember that Mn has a beta distribution (but we
then expected you to give the parameters for that beta) and then quote the
expected value.

(ii) (10 points) For N = 5 calculate the constants Ci for which Yi = max(Zi, Ci)
and

τ := min{i ≤ N : Zi = Yi}



defines the optimal stopping time. (Please explain your reasoning and display
your results in a form that is easy for us to read.)

First check that if Z ∼ Uniform(0, 1) and c is a constant with 0 ≤ c ≤ 1
then

Emax(Z, c) =

∫ c

0

c dy +

∫ 1

c

y dy = (1 + c2)/2 =: g0(c)

and

E (ZI{Z ≥ c}) =

∫ 1

c

y dy = (1− c2)/2 =: g1(c) = 1− g0(c)

By definition YN = ZN = max(ZN , CN) where CN = 0. By the independence
of the Zi’s,

E(YN | Z1,N−1) = EZN = g0(CN) = 1/2.

Thus YN−1 = max (ZN−1, CN−1) where CN−1 = g0(CN). Similarly

E(YN−1 | Z1,N−2) = Emax (ZN−1, CN−1) = g0(CN−1)

so that YN−2 = max(ZN−2, CN−2) where CN−2 := g0(CN−1). And so on.

More formally, a backwards induction shows that

Yi = max(Zi, Ci) where Ci := E (Zi+1 ∨ Ci+1) = g0(Ci+1)

That is the constants are defined recursively by CN = 0 and Ci = g0(Ci+1) for
1 ≤ i < N . As calculated using R:

C1 C2 C3 C4 C5
0.742 0.695 0.625 0.500 0

Notice that Zi = Yi iff Zi ≥ Ci so that τ = min{i : Zi ≥ Ci}.
(iii) (10 points) Calculate EZτ . Again, explain your reasoning; a single number

will not suffice.

You could start from EZτ =
∑N

i=1 EZiI{τ = i}. By independence of the
Zj’s, the ith term equals

EZiI{Z1 < C1, Z2 < C2, . . . , Zi ≥ Ci} = C1C2 . . . Ci−1g1(Ci)

That is,

EZτ = g1(C1) + C1g1(C2) + + · · ·+ C1C2 . . . CN−1g1(CN)



Some of you seemed to be assuming that the event {τ = i} is independent of
the random variable Zi, which is false. Some of you confused E(Zi | τ = i)
with E (ZiI{τ = i}).

Here are the values of EZτ (opt) for various values of N . The first line
(max) shows the corresponding values for EM∗

N .

N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10
max 0.667 0.750 0.800 0.833 0.857 0.875 0.889 0.900 0.909
opt 0.625 0.695 0.742 0.775 0.800 0.820 0.836 0.850 0.861

Some of you used a cleverer method. From the handout,

EZτ = EYτ = EMτ = EM1,

the last equality coming from the martingale property for M . By construction
and the definition of g0,

EM1 = EY1∧τ = EY1 = Emax(Z1, C1) = g0(C1)

Presumably some simple algebra would show why the two expressions for EZτ
are equal.

(iv) (5 points) Explain why your answer from (i) for N = 5 is bigger than your
answer from (ii).

Of course Zτ ≤ M∗
N , which implies EZτ ≤ EM∗

N . The strict inequality
reflects the fact that we can’t know whether Zτ = M∗

N at time τ if τ < N . Put
another way, if τ = i < N because Zi ≥ Ci there is still a positive probability
that maxj:j>i Zj is larger than Zi, even though the expected values suggest
that there is no point in continuing beyond τ . For example, if Z1 = 0.9 then
τ = 1 but there is a positive probability that Z2 > 0.9.


