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Chapter 2
Expectations

Jug as event have (conditiona) probabilities attache to them with possibé interpretation
as along-run frequerty, so too do randam variables have anumbe interpretabé as along-run
averag attachd to them Given aparticula pieee of information the symbol

E(X | informatior)
denota the (CONDITIONAL) EXPECTED VALUE Of (CONDITIONAL) EXPECTATION of the ran-
dom variabk X (given that information).

When the information is taken as understoodthe expectel value is abbeviated to EX.

Expecta values are not restrictal to lie in the range from zero to one.

As with conditiona probabilities there are conveniert abbeviations when the conditioning
information includes somethig like {evert F has occurred:

e(conditional) expected value

E(X | information and “F has occurred’)
E(X | information F)

Unlike many authors | will take the expectal value as aprimitive concept not one to be deiived
from othe concepts All of the method tha those authos use to defire expectal values will be
derived from asmal numbe of bast rules You shoutl provide the interpretatios for the rules
as long-run average of values generatd by independenrepetitiors of randon experiments.

Rules for (conditional) expectations

Let X and Y be randam variables ¢ ard d be constantsard Fq, F», ...be events Then:
(ED E(cX +dY | info) = cE(X | info) + dE(Y | info);
(E2) if X can only take the constan value ¢ unde the given “info” then E(X | info) =
(E3) if the given “info” forces X <Y then E(X | info) < E(Y | info);
(E4) if the evenss Fy, F», ... are disjoint and have union equa to the whole sampé spae then
E(X | info) = > "E(X | F,info)P(F; | info).
i

Only rule E4 shoul require mucdh work to interpret It combines the power of both rules P4
ard P5 for conditionad probabilities Here is an interpretatio for the ca® of two disjoint events
F, and F> with union S.

Repeathe experimen a very large numbe (N) of times noting for ead repetition the value
taken by X and which of F; or F, occurs.

1 2 3 4 ... N—-1 N | total
F, occurs v v v oo v v N,
F, occurs v Y S A N>
X X1 X2 X3 X4 ... XN-1 XN

Statistics 241 7 Septembe 1997 ‘ (© David Pollard




Chapter 2 Expectations ‘ ‘ Page 2 ‘

Those trials wherd=; occurs correspond to conditioning &1:

E(X | Fy, info) ~ 1 Z X;.

1 r0Ccurs
Similarly,
E(X | Fy, info) ~ 1 Xi
2 r,0CCUrs
and
P(Fy | info) ~ Ni/N
P(F; | info) ~ Np/N.
Thus

E(X | Fy, info)P(Fy | info) + E(X | Fz, info)P(F; | info)

1 (Nl) ( 1 ) <N2>
— Xi — )+ — X e
(Nl Fl()CZCUl'S ) N N2 onczcurs N

&

1 N
= — Xi
N i=1
~ E(X | info).

As N gets larger and larger all approximations are supposed to get better and better, and so on.

Rules E2 and E5 imply immediately a result that is used to calculate expectations from
probabilities. Consider the case of a random variablexpressible as a functiog( X) of another

random variableX, which takes on only a discrete set of valugsc,, .... (I will return later to
the case of so-called continuous random variables.) A.-dde the subset o on which X = ¢,
that is,

F ={X=qg}.
Then by E2,

E(Y | F, info) = g(ci),
and by E5,
E(Y | info) = Zg(ci )P(F; | info).

More succinctly,

E(g(X) | info) = Zg(ci)IP(X = G | info)

<2.1>

In particular,
<2.2> E(X | info) = ZQP(X =g | info).
i
Formulas<2.1> and <2.2> apply to random variables that take values in the “discrete set”
{c1, ¢, ...}. If the range of values includes an interval of real numbers, an approximation argu-
ment (see Chapter 4) replaces sums by integrals.
<2.3> Example. The “HHH versus TTHH” Example in Chapter 1 solved the following problem:

Imagine that | have a fair coin, which | toss repeatedly. Two players, M and R,
observe the sequence of tosses, each waiting for a particular pattern on consecutive
tosses: M waits for hhh, and R waits for tthh. The one whose pattern appears first
is the winner. What is the probability that M wins?

The answer—that M has probability 5/12 of winning—is slightly surprising, because, at first
sight, a pattern of four appears harder to achieve than a pattern of three.
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A calculation of expected values will add to the puzzlement. As you will see, if the game
is continued until each player sees his pattern, it takes tthh longer (on average) to appear than
it takes hhh to appear. However, when the two patterns are competing, the tthh pattern is more
likely to appear first. How can that be?

For the moment forget about the competing hhh pattern: calculate the expected number of
tosses needed before the pattern tthh is obtained with four successive tosses. That is, Kwe let
denote the number of tosses required then the problem asks for the expecteB Xalue

The Markov chain diagram keeps track of the progress from the starting state (labelled S)
to the state TTHH where the pattern is achieved. Each arrow in the diagram corresponds to a
transition between states with probability 1/2.

Once again it is easier to solve not just the original problem, but a set of problems, one for
each starting state. Let
Es=EX|startat §
En =E(X |startat H

Then the original problem is asking for the value&#.

Condition on the outcome of the first toss, writifi§ for the event{first toss lands heagls
and T for the event{first toss lands tails From rule E4 for expectations,

Es=E(X | start at STP(T | start at $+ E(X | start at SH)P(H | start at
Both the conditional probabilities equal 1/2 (“fair coin”; probability does not depend on the
state). For the first of the conditional expectations, count 1 for the first toss, then recognize that
the remaining tosses are just those needed to reach TTHH starting from th& state

E(X |startat $ST) =1+ E(X | startat |
Don't forget to count the first toss. An analogous argument leads to an analogous expression for
the second conditional expectation. Susbtitution into the expressiafisftiren gives
Es=11+&1) + Yo(1+E9)

Similarly,

Er =11+ E11) + 121+ Ey)
Yo+ E17) + Y21+ ExTH)

Ertn=1%1+0) + 121+ &)
What does the zero in the last equation represent?

The four linear equations in four unknowns have the soluign= 16, &+ = 14, £+ = 10,
Ertu = 8. Thus, the solution to the original problem is that the expected number of tosses to
achieve the tthh pattern is 16.

On Problem Sheet 2 you are asked to show that the expected number of tosses needed to get
hhh, without competition, is 14. The expected number of tosses for the game with competition
between hhh and tthh is'Q (see Matlab m-file solvéahh tthh.m). Notice that the expected value
for the game with competition is smaller than the minimum of the expected values for the two

| games. Why must it be smaller?

Err

The calculation of an expectation is often a good way to get a rough feel for the behaviour
of a random process. It is helpful to remember expectations for a few standard mechanisms, such
as coin tossing, rather than have to rederive them repeatedly.
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<2.4> Example. For independent coin tossing, what is the expected number of tosses to get the first
head?

Suppose the coin has probabilipy> 0 of landing heads. (So we are actually calculating the
expected value for the geometn)(distribution.) | will present two methods.

Method A.

Condition on whether the first toss lands heads (H) or tails (T). Wittlefined as the number of
tosses until the first head,

EX =E(X | H)PH + E(X | T)PT
=Dp+A+EX)A - p).
The reasoning behind the equality
EX|T)=1+EX

is: After a tail we are back where we started, still counting the number of tosses until a head,
except that the first tail must be included in that count.

Solving the equation foEX we get
EX=1/p.

Does this answer seem reasonable? (Is it always at least 1? Does it incrgaseEases?
What happens ap tends to zero or one?)

Method B.

By the formula<2.1>,

EX = Z k(l— p*tp.
k=1

There are several cute ways to sum this series. Here is my favorite. §Videl — p. Write the
kth summand sta a column ok terms pg<—1, then sum by rows:

EX = p+ pq+ pg® + pg® + ...
+pg+ pg® + pa + ...
+poP+ pgd + ...

+pge ...

Each row is a geometric series.

EX = p/(1—q) + pa/(L— ) + po?/(L—q) +...

=1+q+0°+...
=1/1-q
=1/p,

O same as before.

Probabilists study standard mechanisms, and establish basic results for them, partly in the
hope that they will recognize those same mechanisms buried in other problems. In that way, un-
necessary calculation can be avoided, making it easier to solve more complex problems. It can,
however, take some work to find the hidden mechanism.

<2.5> Example. (coupon collector’'s problem) In order to encourage consumers to buy many packets
of cereal, a manufacurer includes a Famous Probabilist card in each packet. There are 10 differ-
ent types of card: Chung, Feller, Levy, Kologorov,, Doob. Suppose that | am seized by the
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desire to own at least one card of each type. What is the expected number of packets that | need
to buy in order to achieve my goal?

Assume that the manufacturer has produced enormous numbers of cards, the same number
for each type. (If you have ever tried to collect objects of this type, you might doubt the assump-
tion about equal numbers. But, without it, the problem becomes exceedingly difficult.) The as-
sumption ensures, to a good approximation, that the cards in different packets are independent,
with probability 1/10 for a Chung, probability 1/10 for a Feller, and so on.

The high points in my life occur at random “time3i, T+ Ty, ..., Ta+To+. ..+ T1o, When
| add a new type of card to my collection: Aftdf = 1 card | have my first type; after another
T, cards | will get something different from the first card; after anotfgcards | will get a third
type; and so on.

The question asks fdE(Ty + T2 + ... + Tig), which rule E1 (applied repeatedly) reexpresses
asETi +ET, +... 4+ ETo.

The calculation forfET; is trivial becausel; must equal 1: we geET; = 1 by rule E2.
Consider the mechanism controlliig. For concreteness suppose the first card was a Doob.
Each packet after the first is like a coin toss with probability 9/10 of getting a head (= a non-
Doob), with T, like the number of tosses needed to get the first head. Thus

T, has a geometric(9/10) distribution.

Deduce from Example:2.4> that ET, = 10/9, which is slightly larger than 1.

Now consider the mechanism controllifig. Condition on everything that was observed up
to time Ty + T,. Under the assumption of equal abundance and enormous numbers of cards, this
conditioning information is acually irrelevent; the mechanism controllings independent of the
past information. (Hard question: Why would tfig and T3 mechanisms not be independent if
the cards were not equally abundant?) So what is Thahechanism? | am waiting for any one
of the 8 types | have not yet collected. It is like coin tossing with probability 8/10 of heads:

T3 has geometric (8/10) distribution,
and thusETs; = 10/8. And so on, leading to
ETi+ET,+... +ETio=1+10/9+ 10/8+ ... + 10/1 ~ 29.3.

| I should expect to buy about 29.3 packets to collect all ten cards.

The independence between packets was not needed to justify the appeal to rule E1, to break
the expected value of the sum into a sum of expected values. It did allow us to recognize the
various geometric distributions without having to sort through possible effects of Targe the
behavior ofTs, and so on.

You might appreciate better the role of independence if you try to solve a similar problem
with just two sorts of card, not in equal proportions.

For the coupon collectors problem | assumed large nhumbers of cards of each type, in order
to justify the analogy with coin tossing. Without that assumption the depletion of cards from the
population would have a noticeable effect on the proportions of each type remaining after each
purchase. The next example illustrates the effects of sampling from a finite population without
replacement, when the population size is not assumed very large.

<2.6> [Example. Suppose an urn contains r red balls and b black balls, all balls identical except for
color. Suppose balls are removed from the urn one at a time, without replacement. Assume that
the person removing the balls selects them at random from the urn: if k balls remain then each
has probability 1/k of being chosen.

Question: What is the expected number of red balls removed before the first black ball?

The problem might at first appear to require nothing more than a simple application of for-
mula <2.1> for deriving expectations from probabilities. We shall see. Tdie the number of
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emethod of indicators

reds removed before the first black Find the distribution of T, then appeé&to the formula <2.1>
to get
ET = Zk]P’{T =k}.
k

Sound eay enough.

Define R = {ith bal red ard B; = {ith bal black. The possibé values for T are
0,1,...,r. For k in this range,

P{T = k} = P{first k balls red, (k+1)¢ bal is black}
=P(RiRz... ReByy1)
= (PROP(R | ROP(Rs | RiRp) .. . P(Byy1 | Ry. .. R
o r—1 b
T r+br+b—-1""r+b—-k’
The dependeneon k is fearsome | wouldn't like to try multiplying by k and summing If you
are into pain you might continwe the argumert from here.

There is amuch easie way to calculat the expectation by breakirg T into a sun of much
simplea randan variables for which formula <2.1> is trivial to apply. This approat is some-
times called the METHOD OF INDICATORS.

Suppos the red balls are labelled 1, ..., r. Let T; equa 1 if red bal numbe i is sampled
befor the first bladk ball. (Be carefu here The blad balls are not though of as numbered The
first black bal is not a bal bearirg the numbe 1; it might be any of the b blad balls in the urn.)
Then T =Ty + ...+ T,. By symmetry—i is assumd tha the numbes have no influence on the
orde in which red balls are selected—edt T; has the sane expectation Thus

ET=ETi+...+ET, =rET;.

For the calculatian of ET; we can ignore mog of the red balls The event {T; = 1} occus if and
only if red bal numbe 1 is drawn before all b of the blad balls By symmety, the evert has
probability 1/(b + 1). (If b+ 1 objecs are arrangé in randan orde, ead objed has probability
1/(1+ b) of appearig first in the orde.)

If you are not convinced by the appe&to symmety, you might find it helpfu to conside a
thougtt experimen whete all r + b balls are numbereé ard they are removed at randan from the
urn. Tha is, tred all the balls as distinguishal# and sampe until the umn is empy. (You might
find it easie to follow the argumernt in a particula case suc as all 120 = 5! orderings for five
distinguishal® balls 2 red and 3 black) The sampk spae consiss of all permutatios of the
numbes 1tor + b. Ead permutatio is equaly likely. For eat permutatio in which red 1
preceds all the blad balls there is anothe equall likely permutation obtainel by interchanging
the red bal with the first of the blad balls chosen ard there is an equaly likely permutation
in which it appeas after two blad balls obtainel by interchangig the red bal with the sec-
ond of the blac balls chosenand so on. Formally, we are partitioning the whole sampé space
into equall likely events eat determind by a relaive orderirg of red 1 ard all the blad balls.
There are b 4+ 1 sudh equaly likely events ard therr probabilities sum to one.

Now it is eay to calculae the expectel value for red 1.
ET, =0P{Ty =0} +1P{T, =1} =1/(b+ 1)
The expectal numbe of red balls removed before the first bladk ball is equator/(b+ 1).

Problen She¢ 3 outlines anothe way to solve the problem.

Compae the solution r /(b 4+ 1) with the resut for samplirg with replacementwhere the
numbe of draws requiral to get the first bladk would have ageometri¢b/(r + b)) distribution.
With replacementthe expectal numbe of reds removed before the first bladk would be

(b/r +b)™ —1=r/b.

Replacemenof balls after ead draw increass the expectel value slightly. Does tha make
sense?
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You could safely skip the remainder of this Chapter. It contains a discussion of a tricky little
problem, that can be solved by conditioning or by an elegant symmetry argument.

YLOTOZOZOZOTIOTOTOTOIOIOIOTOTOTOK

My interest in the calculations in the last Example was kindled by a problem that appeared
in the August-September 1992 issue of the American Mathematical Monthly. My solution to
the problem—the one | first came up with by application of a straightforward conditioning
argument—reduces the calculation to several applications of the result from the previous Exam-
ple. The solution offered by two readers of the Monthly was slicker.

<2.7> Example. (The problem of the Big Pills and Little Pills)

E 3429[1991, 264]. Proposed by Donald E. Knuth and John McCarthy, Stanford University,
Stanford, CA.

A certain pill bottle contains m large pills and n small pills initially, where each large pill is
equivalent to two small ones. Each day the patient chooses a pill at random; if a small pill is se-
lected, (s)he eats it; otherwise (s)he breaks the selected pill and eats one half, replacing the other
half, which thenceforth is considered to be a small pill.

(a) What is the expected number of small pills remaining when the last large pill is selected?

(b) On which day can we expect the last large pill to be selected?

SOLUTION FROM AMM:

Composite solution by Walter Stromquist, Daniel H. Wagner, Associates, Paoli, PA and Tim Hes-
terberg, Franklin & Marshall College, Lancaster, PAhe answers are (a)/(m+1)+) 1 ,(1/k),

and (b) Zn4+n—(n/(m+1)) — ZL“zl(l/ k). The answer to (a) assumes that the small pill created
by breaking the last large pill is to be counted. A small pill present initially remains when the
last large pill is selected if and only if it is chosen last from amongrnthe 1 element set consist-
ing of itself and the large pills—an event of probability(in + 1). Thus the expected number of
survivors from the original small pills is/(m + 1). Similarly, when thekth large pill is selected

(k = 1,2,...,m), the resulting small pill will outlast the remaining large pills with probability
1/(m —k 4 1), so the expected number of created small pills remaining at the eEcE“:@(l/ k).
Hence the answer to (a) is as above. The bottle will last{2n days, so the answer to (b) is just
2m + n minus the answer to (a), as above.

| offer two methods of solution for the problem. The first method uses a conditioning ar-
gument to set up a recurrence formula for the expected numbers of small pills remaining in the
bottle after each return of half a big pill. The equations are easy to solve by repeated substitu-
tion. The second method uses indicator functions to spell out the Hesterberg-Stromquist method
in more detail. Apparently the slicker method was not as obvious to most readers of the Monthly
(and me):

Editorial comment.Most solvers derived a recurrence relation, guessed the answer,
and verified it by induction. Several commented on the origins of the problem.
Robert High saw a version of it in the MIT Technology Review of April, 1990.
Helmut Prodinger reports that he proposed it in the Canary Islands in 1982. Daniel
Moran attributes the problem to Charles MacCluer of Michigan State University,
where it has been know for some time.

Solved by 38 readers (including those cited) and the proposer. One incorrect solution was
received.

Conditioning method.

Invent random variables to describe the depletion of the pills. Initially therd gre- n
small pills in the bottle. LetS small pills be consumed before the first large pill is broken. After
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the small half is returned to the bottle let there lbgesmall pills left. Then letS;, small pills be
consumed before the next big pill is split, leavibg small pills in the bottle. And so on.

first big broken jth big broken last big broken
S, small—> "<-S, smal—» <—S small—> i
L L L L @ L
L L, small left L L, small left
With this notation, part (a) is asking fdL. Part (b) is asking for@ + n — EL: If the
last big pill is selected on daX then it takesX + L, days to consume then®+ n small pill
equivalents, s&X + ELy = 2m+n.
The random variables are connected by the equation
Li=Li_1—S+1,
the —§ representing the small pills consumed between the breaking af thel)st andith big
pill, and the+1 representing the half of the big pill that is returned to the bottle. Taking expecta-
tions we get
<2.8> EL; =ELj_1 —ES + 1.

The result from Example<2.6> will let us calculateES in terms of EL;_;, thereby producing
the recurrence formula fdEL;.

Condition on the pill history up to thé& — 1)st breaking of big pill (and the return of the
unconsumed half to the bottle). At that point there hre; small pills andm — (i — 1) big pills
in the bottle. The mechanism controllir® is just like the urn problem of Example2.6>, with
r = Lij_; red balls (= small pills)
b=m-— (i — 1) black balls (= big pills).
From that Example,
Li—1
1+m—-(G-1°
To calculateES we would need to average out using weights equal to the probability of each
particular history:

E(S | history to(i — 1)st breaking of a big pi)l =

1
ES = —————— ) P{history)(value ofL;_; for that history)

L+m—0 -1 yisories
The sum on the right-hand side is exactly the sum we would get if we calculdted using
rule E4, partitioning the sample space according to possible histories up tb-th&)st breaking

of a big pill. Thus
1

ES = ———ELi_3.
S=3 +m—i !
Now we can eliminatéd€§ from equality <2.8> to get the recurrence formula for ti&;
values:
1
ELi=(1—-——— |ELi-1+1.
i ( 2 +m— i ) i-1+

If we defined, = EL;/(1+ m—i) the equation becomes
1
6 =6_ D — fori=1,2,...,m,
i i1+ 1+ m—i

with initial condition6y = ELo/(1+ m) = n/(1+ m). Repeated substitution gives

1
01 =00+ —
m

Statistics 241: 7 September 19%7 (© David Pollard




Chapter 2 Expectations ‘ ‘ Page 9 ‘

92—91-|-i—90+1+i
1 m m-1

03 = 92+i—90+1+i+;
2 m m-1 m-2
1 1 1 1

On=...=6p+ — —l——_l—i- +§+1.

That is, the expected number of small pills left after the last big pill is broken equals
ELn=A4+m—-—mby,

A P
T 14m 2 m’

Rewrite of the Stromquist-Hesterberg solution.

Think in terms of half pills, some originally part of big pills. Number the original half pills
1,...,n. Define
H = {+1 if original half pill i survives beyond last big pill
0  otherwise.
Number the big pills 1..., m. Use the same numbers to refer to the half pills that are created
when a big pill is broken. Define
B — {+1 if created half pillj survives beyond last big pill
) 0  otherwise.
The number of small pills surviving beyond the last big pill equals

Hi+...+Hy+Bi1+... 4+ Bn.
By symmetry, eactH; has the same expected value, as does &uciThe expected value asked
for by part (a) equals
<2.9> nEH; + mEB; = nP{H; = 1} + mP{B; = 1}.

For the calculation oP{H; = +1} we can ignore all except the relative ordering of the
big pills and the half pill described bid;. By symmetry, the half pill has probability/im + 1)
of appearing in each of the 4+ 1 possible positions in the relative ordering. In particular,
1
P{H; =41} = ——.
{H1=+1} ——1

For the created half pills the argument is slightly more complicated. If we are given that
big pill number 1 the kth amongst the big pills to be broken, the created half then has to survive
beyond the remainingh — k big pills. Arguing again by symmetry amongst tfra — k + 1)
orderings we get
P(By = +1 | big number 1 chosen as kth Bigr e
Also by symmetry,

1
P{big 1 chosen as kth bjg= -

Average out using the conditioning rule E4 to deduce

m

1 1
P{B; = +1} = — T S
(Br=+1 m k2=; m-—k+1
Notice that the summands run through the valugs tb 1/m in reversed order.

When the values foP{H; = +1} andP{B; = +1} are substituted inta:2.9>, the asserted
O answer to part (a) results.
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