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1 An experiment with two factors

The following small data set was used by BHH = Box et al. (1978, Section
7.7; 8.1 in 2nd ed.). They borrowed the data from Box and Cox (1964,
Section 4), a paper that contains an extensive discussion about how and
why to transform data before feeding them into a standard analysis.

“[The data set] gives the survival times of animals in a 3 x 4 fac-
torial experiment, the factors being (a) three poisons and (b) four
treatments. Each combination of the two factors is used for four
animals, the allocation to animals being completely randomized.”
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## A B C D

## I.1 0.31 0.82 0.43 0.45

## I.2 0.45 1.10 0.45 0.71

## I.3 0.46 0.88 0.63 0.66

## I.4 0.43 0.72 0.76 0.62

## II.1 0.36 0.92 0.44 0.56

## II.2 0.29 0.61 0.35 1.02

## II.3 0.40 0.49 0.31 0.71

## II.4 0.23 1.24 0.40 0.38

## III.1 0.22 0.30 0.23 0.30

## III.2 0.21 0.37 0.25 0.36

## III.3 0.18 0.38 0.24 0.31

## III.4 0.23 0.29 0.22 0.33

BHH were using the data set to explain the virtues of data transfor-
mation. They argued that it was better to make a least squares fit for
rate = 1/time, rather than fitting time itself. My purpose is different. I
want to show you how different reparametrizations affect the output. The
reparametrization is achieved by using different forms of contrasts for the
factor variables.

For the purposes of analysis with R, we need to create a data frame
with response variables time and rate, and factor variables poison and
treatment:

BC <- read.table("boxcox.data", header=T,sep="\t")
BC$rate <- 1/BC$time # transformation suggested by BHH page 235

# poison and treatment are factors

print(BC[c(1,5,17,24:25,48),],digits=3)

## time poison treatment rate

## 1 0.31 I A 3.23

## 5 0.36 II A 2.78

## 17 0.92 II B 1.09

## 24 0.29 III B 3.45

## 25 0.43 I C 2.33

## 48 0.33 III D 3.03

2 Linear models

Suppose yi,j,k denotes the response time for the kth replicate (k = 1, . . . , 4)
under the ith poison (i = I, II, III) and the jth treatment (j = A,B,C). In
order to gain some understanding for how the two factors affect the response
we could fit a model that treats the yi,j,k’s as realizations of random variables

yi,j,k = θi,j + ξi,j,k,
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where the unobserved random errors ξi,j,k have zero expected values, vari-
ances all equal to some unknown σ2, and zero covariance between each pair
of errors.

Linear models express the unknown mean θi,j as a linear function of
unknown parameters determined by the factors. For example, an additive
model would require

θi,j = µ+ αi + βj

Remark. Previously I wrote µ for the whole vector of expected values.
Unfortunately that convention clashes with my other convention of
using roman letters m, ai, bj as coefficients to describe a generic element
of X, with the corresponding greek letters as population parameters,
and hatted roman letters m̂, âi, b̂j for coefficients from least squares
fits.

We could then estimate the parameters µ, αi, βj and σ2 by least squares,
decomposing y as residuals plus fitted values

ŷi,j,k = m̂+ âi + b̂j .

Of course we have to impose some constraints on the µ, αi’s and βj ’s to en-

sure that they are uniquely determined by the θi,j ’s. The coefficients m̂, âi, b̂j
need to be similarly constrained.

Remark. As with all exercises in model fitting, the model does not
claim to be a precise description of how the data were generated. It is
merely a simple and convenient framework for thinking about the data.
As you will see, the additive model for expected times does a poor
job of approximating the observed data. Any conclusions derived from
that model are unlikely to shed light on how poison and treatment

affect time.

The triple subscript notation is unnecessarily cumbersome. It becomes
particularly confusing when we need to think about the matrices involved
in the least squares procedure. It is cleaner to write

E(time | poison = i, treatment = j) = θi,j = m+ αi + βj

for the way the expected values are parametrized. That notation fits well
with the R way of describing the model,
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out1 <- lm(time ~ poison + treatment, data=BC)

Similarly,

θi,j = = m+ αi + βj + γi,j

θi,j = m+ αi + βj

θi,j = m+ αi + βj + γi,j

correspond to

out2 <- lm(time ~ poison * treatment, data=BC) # interactions

out3 <- lm(rate ~ poison + treatment, data=BC)

out4 <- lm(rate ~ poison * treatment, data=BC) # interactions

The γi,j parameters are called interactions. We need to impose some linear
constraints on the unknown parameters to ensure that they are uniquely
determined.

For the moment I’ll put up with whatever reparametrization R has used.
Here is the summary for out1:

## lm(formula = time ~ poison + treatment, data = BC)

## Residuals:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.25170 -0.09625 -0.01490 0.00000 0.06177 0.49830

## Rsquared: 0.65

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.452 0.056 8.088 0.000

## poisonII -0.073 0.056 -1.308 0.198

## poisonIII -0.341 0.056 -6.102 0.000

## treatmentB 0.363 0.065 5.614 0.000

## treatmentC 0.078 0.065 1.213 0.232

## treatmentD 0.220 0.065 3.407 0.001

For both factors in out1 R has used treatment contrasts, which seems to
be the default for my copy of the program. Look at options()$contrasts
for the default on your machine. You can see from the summary that
poisonI and treatmentA are missing from the list of coefficients. The con-
straint applied was α1 = β1 = 0.

From now on, to conserve space, I’ll show only an abbreviated part of
the summary: the call, the coefficients, and their estimated standard errors.
For example, the display for out1 would be reduced to:
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## lm(formula = time ~ poison + treatment, data = BC)

## (Int) pII pIII tB tC tD

## Est 0.452 -0.073 -0.341 0.363 0.078 0.220

## StdErr 0.056 0.056 0.056 0.065 0.065 0.065

The summary for out4 would be:

## lm(formula = rate ~ poison * treatment, data = BC)

## (Int) pII pIII tB tC tD pII:tB pIII:tB pII:tC pIII:tC

## Est 2.49 0.78 2.32 -1.32 -0.62 -0.80 -0.55 -0.45 0.07 0.086

## StdErr 0.24 0.35 0.35 0.35 0.35 0.35 0.49 0.49 0.49 0.490

## pII:tD pIII:tD

## Est -0.77 -0.91

## StdErr 0.49 0.49

The coefficient labelled pII:tB corresponds to the interaction parameter γi,j
with i = II and j = B.

Remark. In case you are interested, the function to produce the smaller
summaries is contained in 312.R, which is in the Handouts directory.

The plots of residuals against fitted values certainly suggest that the
assumption of constant variance is hard to believe for the time variable.
Notice the strange pattern in the first two residual plots.
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The interaction term slightly improves the additive fit for time, but
not by much. The fit with interaction terms for rate also shows only a
slight improvement over the additive fit. You should peruse the indivual
summaries for more details.

From now on I’ll ignore the issue of how to choose a transformation and
focus on the interpretation of the coefficients for lm(rate∼).

3 Least squares with a single factor

Let me start with the simpler case of just one factor, first (out5) with the
intercept explicitly excluded and then (out6) with an intercept. In this
section, y denotes the rate response vector.
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## lm(formula = rate ~ -1 + treatment, data = BC)

## tA tB tC tD

## Est 3.5 1.9 2.9 2.2

## StdErr 0.3 0.3 0.3 0.3

## lm(formula = rate ~ 1 + treatment, data = BC)

## (Int) tB tC tD

## Est 3.5 -1.7 -0.6 -1.4

## StdErr 0.3 0.4 0.4 0.4

The factor BC$treatment implicitly defines four dummy predictors, 1A,
1B, 1C , and 1D. The dummy 1A contains a 1 wherever BC$treatment

contains an A and zeros elsewhere; and so on. In R you could manufac-
ture dummyT = (1A,1B,1C ,1D) by

dummyT <- outer(BC$treat,levels(BC$treat),"==")+0

# the zero converts from Boolean to numeric

dimnames(dummyT)[[2]] <- levels(BC$treatment)

dummyT[c(1:2,13:14,25:26,37:38),] # Why did I choose these rows?

## A B C D

## [1,] 1 0 0 0

## [2,] 1 0 0 0

## [3,] 0 1 0 0

## [4,] 0 1 0 0

## [5,] 0 0 1 0

## [6,] 0 0 1 0

## [7,] 0 0 0 1

## [8,] 0 0 0 1

If I only showed rows 1, 13, 25, 37 you would see I4, the 4×4 identity matrix.
Why?

The model matrix for out5 is dummyT itself. It produces a fitted vector
of the form

ŷ = b̂A1A + b̂B1B + b̂C1C + b̂D1D,

which corresponds to projection of y onto the 4-dimensional subspace X

of R48 spanned by 1A,1B,1C ,1D. The least squares estimates b̂A, . . . , b̂D
are just the means over responses at the same level of the BC$treatment

factor.

print( rbind(out5$coeff,tapply(BC$rate,BC$treatment,mean)),digits=4)

## treatmentA treatmentB treatmentC treatmentD

## [1,] 3.519 1.862 2.947 2.161

## [2,] 3.519 1.862 2.947 2.161
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The model matrix for out6 is X = (1,1B,1c,1D). It produces

ŷ = â01 + â21B + â31C + â41D.

The fitted vector is the same as for out5 because the linearly independent
column vectors 1,1B,1C ,1D span the same X. Only the parametrizations
differ. In case you have doubts:

round( max(abs( out5$fit - out6$fit )) ,6) = 0.

The generic element z of X can be expressed in two ways:

z = bA1A + bB1B + bC1C + bD1D = a01 + a21B + a31C + a41D.

There is a one-to-one correspondence between the column vectors of coef-
ficients b = [bA, bB, bC , bD] and a = [a0, a2, a3, a4], namely bA = a0 and
bB = a0 + a2 and bC = a0 + a3 and bD = a0 + a4. In matrix terms b = Ka
where K is the matrix

## [,1] [,2] [,3] [,4]

## [1,] 1 0 0 0

## [2,] 1 1 0 0

## [3,] 1 0 1 0

## [4,] 1 0 0 1

In particular, b̂ = Kâ and var(̂b) = Kvar(â)KT . The summary.lm()

function, which gets called when we ask for summary() of an lm object,
actually calculates the estimated matrix of variances and covariances for
the estimated coefficients. We should be able to reproduce part of out5

from out6.

K <- matrix(c(1,0,0,0,1,1,0,0,1,0,1,0,1,0,0,1),byrow=T,ncol=4)

ahat <- out6$coeff

newbhat <- K %*% ahat

V6 <- summary(out6)$cov # estimate of var(ahat)

V5 <- K %*% V6 %*% t(K)

OUT5 <- BC.coeff(out5,do.print=F)

#print(OUT5£CALL)

print( rbind( OUT5$COEFF,t(newbhat), stderr=sqrt(diag(V5))),digits=3)

## tA tB tC tD

## Est 3.519 1.862 2.947 2.161

## StdErr 0.292 0.292 0.292 0.292

## 3.519 1.862 2.947 2.161

## stderr 0.289 0.289 0.289 0.289

The first two rows give the out5 values; the next two rows give the same
values calculated from out6. It works, with just a little bit of round-off
error.
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4 One factor with Helmert contrasts and intercept

Now add another column to BC, a copy of BC$treatment with its contrasts
changed from the default (treatment) to Helmert. You won’t see any dif-
ference between BC$treatment and BC$Ht if you just print out BC, but it
does make a difference to the coefficients for the least squares fit because of
a difference in the contrast matrices:

BC$Ht <- C(BC$treatment,helmert)

out7 <- lm(rate ~ 1+ Ht, BC)

C.treat <- contrasts(BC$treatment)

C.Htreat <- contrasts(BC$Ht)

dimnames(C.Htreat)[[2]] <- names(out7$coef)[-1]

# insert a column of 1's before C.Htreat

data.frame(C.treat, ... =" ", int= 1, .. =" ", C.Htreat)

## B C D ... int .. Ht1 Ht2 Ht3

## A 0 0 0 1 -1 -1 -1

## B 1 0 0 1 1 -1 -1

## C 0 1 0 1 0 2 -1

## D 0 0 1 1 0 0 3

Notice that the columns of the contrast matrix C.Htreat are orthogonal
to 14.

Again we get a reparametrization of the same fitted vector:

round( max(abs( out6$fit - out7$fit )) ,6) = 0.

Of course the summary looks very different from the summaries for out5

and out6:

## lm(formula = rate ~ 1 + Ht, data = BC)

## Residuals:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -1.6310 -0.7443 -0.2581 0.0000 0.8479 2.0360

## Rsquared: 0.312

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.622 0.146 17.947 0.000

## Ht1 -0.829 0.207 -4.010 0.000

## Ht2 0.086 0.119 0.717 0.477

## Ht3 -0.154 0.084 -1.823 0.075

A lot of interesting stuff has happened inside the least squares calculation.
We need to be careful interpreting the coefficients. The model matrix used
for out7 is

X = (148, dummyT %*% C4) where C4 = C.Htreat = contr.helmert(4).
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typical <- c(1,13,25,37)

blank <- rep("",4)

mm <- model.matrix(out7)

dimnames(mm)[[2]][1] <- "Int"

# Insert columns of blanks to separate the four matrices.

data.frame(dummyT[typical,], .=blank, mm[typical,],

..=blank,BC[typical,c(2,5)], ...=blank, C.Htreat)

## A B C D . Int Ht1 Ht2 Ht3 .. poison Ht ... Ht1.1 Ht2.1 Ht3.1

## 1 1 0 0 0 1 -1 -1 -1 I A -1 -1 -1

## 13 0 1 0 0 1 1 -1 -1 I B 1 -1 -1

## 25 0 0 1 0 1 0 2 -1 I C 0 2 -1

## 37 0 0 0 1 1 0 0 3 I D 0 0 3

In effect, R has coded each appearance of level A by the first row in
C.Htreat, and so on.

4.1 General interpretation of a fit with Helmert contrasts

Consider the general case of an n× 2 data frame (y,F), where F is a factor
taking values in a set L of k different labels. For simplicity you could
assume L = [k] = {1, 2, . . . , k}. Write F = (Ft : t ∈ L) for the n× k matrix
of dummy vectors corresponding to F. That is, Ft has a 1 in those rows for
which F takes the value t, zeros elsewhere.

For out7 we have F = BC$Ht, with n = 48, k = 4 and L = {A,B,C,D}.
The matrix F corresponds to dummyT = (1A,1B,1C ,1D).

If F has Helmert contrasts then the model matrix for lm(y ~ X) is

X = (1n, FCk) = F (1k, Ck) where C_k = contr.helmert(k).

The second form for X comes from the fact that F1k =
∑

t∈L Ft = 1n. The
columns of the k × (k − 1) matrix Ck form a basis for the subspace of Rk

orthogonal to 1k. The columns of the k × k matrix Kk = (1k, Ck) form a
basis of Rk; the matrix Kk is non-singular, with inverse Lk, so that

X = FKk and F = XLk.

The columns of F span the same k-dimensional subspace of Rn as the
columns of X.

Remark. Here I am tacitly assuming that F is of rank k, which is
true provided none of the Ft’s is a vector of zeros. That is, X has
dimension k provided each of the levels in L appears somewhere in F.
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The generic element z of X is now represented by a k× 1 column vector
of “raw” coefficients p = [m, f1, . . . , fk−1] with

z = Xp = m1n + FCkf where f = [f1, . . . , fk−1].

If we define a k× 1 column vector a = Ckf then we have 1Tk a = 1
T
kCkf = 0

and

z = m1n +
∑

t∈L
atFt with

∑
t∈L at = 0.

In matrix notation,

(
m
a

)
= MFp where MF =

[ 1 k−1

1 1 0
k 0 Ck

]
.

There is no harm in using the same m on the left-hand side of the equality
because it represents the same number. In particular,(

m̂
â

)
= MFp̂ so that var

(
m̂
â

)
= MFvar(p̂)MT

F .

M.treat <- bdiag(1,C.Htreat)

raw.hat <- out7$coeff

ma.hat <- as.vector(M.treat %*% raw.hat)

names(ma.hat) <- c("int",levels(BC$Ht))

V.ma.hat <- M.treat %*% summary(out7)$cov %*% t(M.treat)

ma.hat.stderr <- sqrt(diag(V.ma.hat))

est <- rbind(ma.hat = ma.hat,std.err=ma.hat.stderr)

print(est,3)

## int A B C D

## ma.hat 2.622 0.897 -0.76 0.325 -0.461

## std.err 0.144 0.250 0.25 0.250 0.250

The fitted model is now represented by an estimated average effect of the
treatments (coeff 2.62) together with estimated deviations (0.9, −0.76, 0.32,
−0.46) of the individual treatments from that average.

Just as a check, make sure that the ma.hat coefficients satisfy the con-
straints and they do give the same fit as out5:

round( sum(ma.hat[2:5]),5)

## [1] 0
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print(rbind(out5$coef, ma.hat[1] + ma.hat[2:5]),4)

## treatmentA treatmentB treatmentC treatmentD

## [1,] 3.519 1.862 2.947 2.161

## [2,] 3.519 1.862 2.947 2.161

Each of out5, out6, and out7, together with the ma.hat give the same
fitted vector ŷ. They express ŷ using different estimated coefficients:

BC.coeff(out6,3)

## lm(formula = rate ~ 1 + treatment, data = BC)

## (Int) tB tC tD

## Est 3.519 -1.657 -0.572 -1.358

## StdErr 0.292 0.413 0.413 0.413

BC.coeff(out5,3)

## lm(formula = rate ~ -1 + treatment, data = BC)

## tA tB tC tD

## Est 3.519 1.862 2.947 2.161

## StdErr 0.292 0.292 0.292 0.292

BC.coeff(out7,3)

## lm(formula = rate ~ 1 + Ht, data = BC)

## (Int) Ht1 Ht2 Ht3

## Est 2.622 -0.829 0.0855 -0.1538

## StdErr 0.146 0.207 0.1193 0.0844

print(est,3) # ma.hat derived from out7

## int A B C D

## ma.hat 2.622 0.897 -0.76 0.325 -0.461

## std.err 0.144 0.250 0.25 0.250 0.250

Which is easiest to interpret?

5 Two factors: additive effects

The story gets more complicated when both the poison and treatment factors
are used as predictors. Let me again consider a more general situation where
we have two factors, represented as an n × 1 vector F with elements taken
from the set [k] = {1, 2, . . . , k} and an n × 1 vector G with elements taken
from the set [`] = {1, 2, . . . , `}. Because R doesn’t allow fancy symbols as
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variable names, the first five rows of the part of the data frame corresponding
to the factors and the intercept would look something like:

## intercept F.factor G.factor

## 1 1 1 7

## 2 1 3 9

## 3 1 8 6

## 4 1 2 11

## 5 1 4 2

Perhaps I should have made up more suggestive names for the levels, such
as {A,B,C, . . . } and {a, b, c, . . . } so that you could more easily distinguish
between the two factors.

The factor F corresponds to an n×k matrix F = (F1, . . . , Fk) of dummy
variables, where Fi indicates where F = i. That is, F [r, i] = 1 if and only
if F[r] = i, zero otherwise. Similarly G corresponds to an n× ` matrix G =
(G1, . . . , Gk).

Again let me assume that both factors have Helmert contrasts. The
R command lm(y ~ F.factor + G.factor) then projects y onto the sub-
space XF+G spanned by 1n, F1, . . . , Fk, G1, . . . , G`.

For the moment let me assume that each of the k` factor combinations
F[r] = i,G[r] = j, for i ∈ [k] and j ∈ [`], appears at least once amongst the
rows of the n × (k + `) matrix (F,G). As you will show on Homework 5,
that assumption implies that XF+G has dimension k + ` − 1. Equivalently,
it implies that each z in XF+G has a unique representation

<5.1> z = m1n + Fa+Gb with
∑

i∈[k]
ai = 0 =

∑
j∈[`]

bj .

In particular, both

Ey = µ1 +
∑

i
αiFi +

∑
j
βjGj with

∑
i
αi = 0 =

∑
j
βj

ŷ = m̂1 +
∑

i
âiFi +

∑
j
b̂jGj with

∑
i
âi = 0 =

∑
j
b̂j

have unique solutions. It then makes sense to think of m̂ as an estimator
for µ, and so on.

R solves the least squares problem using the model matrix

X = (1, FCk, GC`)

BC$Hp <- C(BC$poison,helmert)

out.HtHp <- lm(rate ~ Ht + Hp,BC)

look(out.HtHp)
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## lm(formula = rate ~ Ht + Hp, data = BC)

## Residuals:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.82760 -0.37620 0.02116 0.00000 0.27570 1.18200

## Rsquared: 0.844

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.622 0.071 36.842 0.000

## Ht1 -0.829 0.101 -8.233 0.000

## Ht2 0.086 0.058 1.472 0.149

## Ht3 -0.154 0.041 -3.742 0.001

## Hp1 0.234 0.087 2.688 0.010

## Hp2 0.587 0.050 11.670 0.000

Once again R has created names for the coefficients f̂ and ĝ that appear
in the representation

ŷ = m̂148 + dummyT %*% C4f̂ + dummyG %*%C3ĝ.

In the general case, each vector z in XF+G has a unique representation

z = m1n+FCkf+GC`g with f = [f1, . . . , fk−1] and g = [g1, . . . , g`−1].

The vectors a = Ckf and b = C`g then satisfy <5.1>.
The correspondence between the vector of “raw” coefficients pT = (m, fT , gT )

for which z = Xp and the constrained coefficients for which z = m1n+Fa+
Gb is given by

ma
b

 = MF+Gp where MF+G =


1 k−1 `−1

1 1 0 0
k 0 Ck 0
` 0 0 C`


In particularm̂â

b̂

 = MF+Gp̂ so that var

m̂â
b̂

 = MF+Gvar(p̂)MT
F+G.

CHt <- contrasts(BC$Ht)

CHp <- contrasts(BC$Hp)

M.HtHp <- bdiag(1,CHt,CHp)

raw.hat <- out.HtHp$coeff

mab.hat <- as.vector(M.HtHp %*% raw.hat)

names(mab.hat) <- c("int",levels(BC$Ht),levels(BC$Hp))
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V.mab.hat <- M.HtHp %*% summary(out.HtHp)$cov %*% t(M.HtHp)

mab.hat.stderr <- sqrt(diag(V.mab.hat))

est.HtHp <- rbind(mab.hat = mab.hat,std.err=mab.hat.stderr)

print(est.HtHp,3)

## int A B C D I II III

## mab.hat 2.622 0.897 -0.76 0.325 -0.461 -0.822 -0.353 1.175

## std.err 0.144 0.250 0.25 0.250 0.250 0.204 0.204 0.204

The fitted model is now represented by an estimated average effect of the
treatments (coeff 2.62) together with estimated deviations from that average
due to an additive effect of treatment and poison.

The BC data are balanced, in the sense that there is the same number
of replicates for every treatment/poison combination. For that reason, the
least squares estimates have a simple representation, m̂ = y... and âi = yi..−y
and b̂j = y.j. − y:

grand.mean <- mean(BC$rate)

meanT <- tapply(BC$rate,BC$treatment,mean) - grand.mean

meanP <- tapply(BC$rate,BC$poison,mean) - grand.mean

means <- c(grand=grand.mean,meanT, meanP)

print(rbind(means,mab.hat),3)

## grand A B C D I II III

## means 2.62 0.897 -0.76 0.325 -0.461 -0.822 -0.353 1.17

## mab.hat 2.62 0.897 -0.76 0.325 -0.461 -0.822 -0.353 1.17

Remark. You might be wondering why the estimated standard errors
in the previous R display were all the same (up to rounding error). The
representation as centered means explains the equality. If the data set
were not balanced it would be most surprising to have such equalities.

If some of the yijk’s were lost, for some reason, the design would probably
not be balanced. The least squares estimates would no longer take such a
simple form.

Conceptually, the least squares procedure has decomposed the table
BC$rate (the first matrix in the next R display) into an additive fit (the
second matrix) plus a residual (the third matrix):

## A B C D .. A.1 B.1 C.1 D.1 ... A.2 B.2 C.2 D.2

## I.1 3.2 1.2 2.3 2.2 2.7 1.0 2.1 1.3 0.5 0.2 0.2 0.9

## I.2 2.2 0.9 2.2 1.4 2.7 1.0 2.1 1.3 -0.5 -0.1 0.1 0.1

## I.3 2.2 1.1 1.6 1.5 2.7 1.0 2.1 1.3 -0.5 0.1 -0.5 0.2

## I.4 2.3 1.4 1.3 1.6 2.7 1.0 2.1 1.3 -0.4 0.3 -0.8 0.3
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## II.1 2.8 1.1 2.3 1.8 3.2 1.5 2.6 1.8 -0.4 -0.4 -0.3 0.0

## II.2 3.4 1.6 2.9 1.0 3.2 1.5 2.6 1.8 0.3 0.1 0.3 -0.8

## II.3 2.5 2.0 3.2 1.4 3.2 1.5 2.6 1.8 -0.7 0.5 0.6 -0.4

## II.4 4.3 0.8 2.5 2.6 3.2 1.5 2.6 1.8 1.2 -0.7 -0.1 0.8

## III.1 4.5 3.3 4.3 3.3 4.7 3.0 4.1 3.3 -0.1 0.3 0.2 0.0

## III.2 4.8 2.7 4.0 2.8 4.7 3.0 4.1 3.3 0.1 -0.3 -0.1 -0.6

## III.3 5.6 2.6 4.2 3.2 4.7 3.0 4.1 3.3 0.9 -0.4 0.0 -0.1

## III.4 4.3 3.4 4.5 3.0 4.7 3.0 4.1 3.3 -0.3 0.4 0.4 -0.3

Of course the four fitted values are the same within each treatment/poison
cell. I could have reduced the fit to a much simpler table:

fits2 <- out.HtHp$fit[seq(1,48,by=4)]

MM <- Matrix(fits2,ncol=4)

dimnames(MM) <- list(levels(BC$poison),levels(BC$treat))

round(MM,3)

## 3 x 4 Matrix of class "dgeMatrix"

## A B C D

## I 2.698 1.040 2.126 1.339

## II 3.166 1.509 2.594 1.808

## III 4.694 3.037 4.122 3.336

For the sake of comparison, here is the table explicitly calculated from the
estimated coefficients in the constrained additive fit, with the coefficients
m̂, â1, â2, â3, â4 added as a top row and the coefficients b̂1, b̂2, b̂3 filling out
the rest of the first column. The south-east 3× 4 submatrix agrees with the
previous R display.

row.hat <- mab.hat[6:8]

col.hat <- mab.hat[2:5]

fitted.HtHp <- outer(row.hat,col.hat,"+") + mab.hat[1]

additive <- as.matrix(rbind(mab.hat[1:5],cbind(mab.hat[6:8],fitted.HtHp)))

round(additive,3)

## int A B C D

## 2.622 0.897 -0.760 0.325 -0.461

## I -0.822 2.698 1.040 2.126 1.339

## II -0.353 3.166 1.509 2.594 1.808

## III 1.175 4.694 3.037 4.122 3.336

5.1 The effect of missing data

Suppose I were careless and lost some of the BC data rows. Instead of
getting the estimates from the full data set I would then get estimates based
on only a subset of the data. That is, instead of
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BC.coeff(out.HtHp)

## lm(formula = rate ~ Ht + Hp, data = BC)

## (Int) Ht1 Ht2 Ht3 Hp1 Hp2

## Est 2.62 -0.8 0.09 -0.15 0.23 0.59

## StdErr 0.07 0.1 0.06 0.04 0.09 0.05

# or

print(est.HtHp,2)

## int A B C D I II III

## mab.hat 2.62 0.90 -0.76 0.32 -0.46 -0.82 -0.35 1.2

## std.err 0.14 0.25 0.25 0.25 0.25 0.20 0.20 0.2

I would have something like

lost <- c(3,5,19,22)

out.lost <- lm(rate ~ Ht + Hp, BC, subset = -lost)

raw.hat <- out.lost$coeff

mab.hat <- as.vector(M.HtHp %*% raw.hat)

names(mab.hat) <- c("int",levels(BC$Ht),levels(BC$Hp))

V.mab.hat <- M.HtHp %*% summary(out.lost)$cov %*% t(M.HtHp)

mab.hat.stderr <- sqrt(diag(V.mab.hat))

est.lost <- rbind(mab.hat = mab.hat,std.err=mab.hat.stderr)

print(est.lost,2)

## int A B C D I II III

## mab.hat 2.64 0.97 -0.80 0.31 -0.48 -0.80 -0.38 1.18

## std.err 0.15 0.27 0.27 0.25 0.25 0.21 0.22 0.21

Notice that the calculations are essentially the same as in the balanced
case, once we have the raw fit. The lack of balance has no effect on the
interpretation of the fit with the constrained parametrization.

The file 312.R contains the code for an R function

lose.some(num.samples=5,lose=4).

The default sets the number of lost observations equal to 4. Also by default,
the function calculates the fit for the original full data set plus 5 randomly
chosen subsets.

round( lose.some(),2)

## Error in lose.some(): object ’mab.hat’ not found

The spread in a larger number of randomly chosen subsets is more in-
teresting:
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COEFF <- lose.some(num.samples=100,lose=4)

## Error in lose.some(num.samples = 100, lose = 4): object ’mab.hat’ not found

hist(COEFF[,"int"],xlab="intercept",main="variability of intercept coefficient")

variability of intercept coefficient

intercept

F
re

qu
en

cy

2.56 2.58 2.60 2.62 2.64 2.66 2.68 2.70

0
5

10
15

20

Compare with the estimated standard error 0.15.

6 Two factors: interactions

Once again suppose factor F is a factor with levels [k], which corresponds
to an n× k matrix F = (F1, . . . , Fk) of dummy variables. And G is a factor
with levels [`], which corresponds to an n × ` matrix G = (G1, . . . , Gk) of
dummy variables.
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Conceptually, the pair of factors together define a new factor with k`
levels—which I write as F ∗ G by analogy with R notation—taking values
in the set {(i, j) : i ∈ [k], j ∈ [`]}. It is represented by the set of k` dummy
variables Fi ∗ Gj , where the ∗ denotes component-wise multiplication of
vectors, as in R: the rth element of Fi ∗Gj equals 1 if F[r] = i and G[r] = j,
and is 0 otherwise. If Fi ∗ Gj 6= 0 for all i and j, the set of all kr dummy
variables span a k`-dimensional subspace XF∗G of Rn. The challenge is to
write each vector z in that subspace as

<5.2> z = m1n +
∑

i≤k
aiFi +

∑
j≤`

bjGj +
∑

i≤k,j≤`
di,jFi ∗Gj

with constraints
∑

i ai = 0 and
∑

j bj = 0 and
∑

j di,j = 0 for each i
and

∑
i di,j = 0 for each i.

Remark. We have 1+k+ `+k` parameters subject to k+ `+1 linearly
independent constraints (a tricky calculation), which leaves k` degrees
of freedom. That agrees with the fact that the k` factors Fi ∗ Gj are
linearly independent if Fi ∗ Gj 6= 0 for all i and j. For the moment
don’t worry too much about the calculation. Homework 5 will step you
through the solution.

The subspace XF∗G can also have dimension k` without the
assumption that every pair of possible factor levels is represented
in F ∗G.

Nevertheless, I’ll tacitly assume the stronger condition throughout
this Section.

Under Helmert contrasts, the factor F has a k×(k−1) contrast matrix Ck

whose columns span the part of Rk that is orthogonal to 1k. The k × k
matrix Kk = (1k, Ck) has columns that form a basis for Rk; the matrix is
non-singular with k × k inverse Lk. Define an n× k matrix

Φ = (φ1, . . . , φk) = FKk = (1n, FCk).

The correspondence between Φ and F is one-to-one, with F = ΦLk. The
columns of Φ span the same subset of Rn as the columns of F . More explic-
itly,

<5.3> Fi =
∑

r∈[k]
Lk[r, i]φr for each i in [k].

Similarly, under Helmert contrasts, the factor G has an `×(`−1) contrast
matrix for which K` = (1`, C`) is non-singular with `× ` inverse L`, and the
columns of the n× ` matrix

Ψ = (ψ1, . . . , ψ`) = GK` = (1n, GC`)
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span the same subspace of Rn as the columns of G, with

<5.4> Gj =
∑

s∈[k]
L`[s, j]ψs for each j in [`].

The component-wise product of the factor dummy variables is given by

Fi ∗Gj =

(∑
r∈[k]

Lk[r, i]φr

)
∗
(∑

s∈[k]
L`[s, j]ψs

)
=
∑

r,s
Lk[r, i]L`[s, j]φr ∗ ψs.

Every linear combination of the Fi ∗Gj ’s can be written as a linear combina-
tion of the φr ∗ ψs’s. The vectors {φr ∗ ψs : r ∈ [k], s ∈ [`]} provide another
basis for XF∗G. More explicitly, for any k × ` matrix M ,∑

i,j
M [i, j]Fi ∗Gj

=
∑

i,j
M [i, j]

∑
r,s
Lk[r, i]L`[s, j]φr ∗ ψs

=
∑

r,s

(∑
i,j
M [i, j]Lk[r, i]L`[s, j]

)
φr ∗ ψs

=
∑
r,s

B[r, s]φr ∗ ψs where B[r, s] =
∑
i,j

M [i, j]Lk[r, i]L`[s, j].<5.5>

That is, B = LrMLT
` . Equivalently, M = KkBK

T
` . The correspondence is,

indeed, one-to-one.

6.1 Interactions with constrained coefficients

The R command out.FG = lm(y ~ F.factor*G.factor) uses the n× (k`)
model matrix X that has columns φi ∗ ψj . Because φ1 = 1n = ψ1, the
leading columns of X are just 1n, φ1, . . . , φk, ψ1, . . . , ψ`. To shorten the
display I print out only the unique rows of X for the BC example.

out.TP <- lm(rate ~ Ht*Hp,BC)

C4 <- contrasts(BC$Ht); C3 <- contrasts(BC$Hp)

Phi <- dummyT %*% cbind(1,C4); Psi <- dummyP %*% cbind(1,C3)

mm.TP <- unique(model.matrix(out.TP)) # the unique rows of X

dimnames(mm.TP)[[2]][1] <- "int" # shorten to make display fit page width

If you look carefully you should be able to see many copies of C4 and C3

hiding in the matrix mm.TP[,2:6]. You should also note that the columns
for the interactions are just component-wise products of the columns for the
individual factors. For example,

mm.TP[,"Ht3:Hp2"] is equal to mm.TP[,"Ht3"] * mm.TP[,"Hp2"]
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# You should check that mm.TP[,"Ht3:Hp2"]-mm.TP[,"Ht3"] * mm.TP[,"Hp2"] is zero

print(unique(Phi))

## [,1] [,2] [,3] [,4]

## [1,] 1 -1 -1 -1

## [2,] 1 1 -1 -1

## [3,] 1 0 2 -1

## [4,] 1 0 0 3

print(unique(Psi))

## [,1] [,2] [,3]

## [1,] 1 -1 -1

## [2,] 1 1 -1

## [3,] 1 0 2

print(mm.TP)

## int Ht1 Ht2 Ht3 Hp1 Hp2 Ht1:Hp1 Ht2:Hp1 Ht3:Hp1 Ht1:Hp2 Ht2:Hp2 Ht3:Hp2

## 1 1 -1 -1 -1 -1 -1 1 1 1 1 1 1

## 5 1 -1 -1 -1 1 -1 -1 -1 -1 1 1 1

## 9 1 -1 -1 -1 0 2 0 0 0 -2 -2 -2

## 13 1 1 -1 -1 -1 -1 -1 1 1 -1 1 1

## 17 1 1 -1 -1 1 -1 1 -1 -1 -1 1 1

## 21 1 1 -1 -1 0 2 0 0 0 2 -2 -2

## 25 1 0 2 -1 -1 -1 0 -2 1 0 -2 1

## 29 1 0 2 -1 1 -1 0 2 -1 0 -2 1

## 33 1 0 2 -1 0 2 0 0 0 0 4 -2

## 37 1 0 0 3 -1 -1 0 0 -3 0 0 -3

## 41 1 0 0 3 1 -1 0 0 3 0 0 -3

## 45 1 0 0 3 0 2 0 0 0 0 0 6

Before you read further you should look at the output from

alph <- LETTERS[1:24]

Malph <- matrix(alph,nrow=4)

print(alph); print(Malph); print(as.vector(Malph))

You will see how R turns a vector alph of length 24 into a 4 × 6 matrix
by matrix(p,nrow=k): it chops alph into subvectors of length 4 then makes
those pieces the columns of a matrix.

Remark. In fact R stores a k × ` matrix as a vector of length k`.

For the BC model with interactions:
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raw <- out.TP$coeff

X <- model.matrix(out.TP)

dd <- dimnames(X)[[2]]

print(rbind(names(raw),dd)); print(matrix(names(raw),nrow=4))

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## "(Intercept)" "Ht1" "Ht2" "Ht3" "Hp1" "Hp2" "Ht1:Hp1" "Ht2:Hp1"

## dd "(Intercept)" "Ht1" "Ht2" "Ht3" "Hp1" "Hp2" "Ht1:Hp1" "Ht2:Hp1"

## [,9] [,10] [,11] [,12]

## "Ht3:Hp1" "Ht1:Hp2" "Ht2:Hp2" "Ht3:Hp2"

## dd "Ht3:Hp1" "Ht1:Hp2" "Ht2:Hp2" "Ht3:Hp2"

## [,1] [,2] [,3]

## [1,] "(Intercept)" "Hp1" "Ht3:Hp1"

## [2,] "Ht1" "Hp2" "Ht1:Hp2"

## [3,] "Ht2" "Ht1:Hp1" "Ht2:Hp2"

## [4,] "Ht3" "Ht2:Hp1" "Ht3:Hp2"

In the general case, with factors F and G, each vector z in XF∗G has a
unique representation as z = Xp, where p is a (kl)× 1 vector of coefficients.
It helps to think of p also as the k × ` matrix B from <5.5>, which can be
partitioned as

B = matrix(p, nrow = k) =

[ 1 `−1

1 m gT

k−1 f N

]
.

Then we have p = as.vector(B) and z =
∑

r,sB[r, s]φr ∗ψs. By <5.2>, we
also have z =

∑
i,j M [i, j]Fi ∗Gj , where

M = KkBK
T
`

=
(
1k, Ck

)(m gT

f N

)(
1
T
`

CT
`

)
= m1k1

T
` + Ckf1

T
` + 1kg

TCT
` + CkNC

T
` .

Define a = Ckf and b = C`g and D = CkNC
T
` . Note that 1Tk a = 0 = 1

T
` b

and 1
T
kD = 0 and D1` = 0. Also

M [i, j] = m+ ai + bj +Di,j ,

so that

z =
∑

i,j
M [i, j]Fi ∗Gj = m1n + Fa+Gb+

∑
i,j
D[i, j]Fi ∗Gj ,

as in <5.2>.
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If I were not so worn out after all those calculations I would now de-
rive the matrix that defines the transformation from G-coordinates to con-
strained m, a, b coordinates; then I would produce tables of estimated con-
strained coeffients and their estimated standard errors.

Maybe next time.
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