
Appendix C

Convexity

SECTION 1 defines convex sets and functions.
SECTION 2 shows that convex functions defined on subintervals of the real line have left-

and right-hand derivatives everywhere.
SECTION 3 shows that convex functions on the real line can be recovered as integrals of

their one-sided derivatives.
SECTION 4 shows that convex subsets of Euclidean spaces have nonempty relative interiors.
SECTION 5 derives various facts about separation of convex sets by linear functions.

1. Convex sets and functions

A subset C of a vector space is said to be convex if it contains all the line segments
joining pairs of its points, that is,

αx1 + (1 − α)x2 ∈ C for all x1, x2 ∈ C and all 0 < α < 1.

A real-valued function f defined on a convex subset C (of a vector space V) is said
to be convex if

f (αx1 + (1 − α)x2) ≤ α f (x1) + (1 − α) f (x2) for all x1, x2 ∈ C and 0 < α < 1.

Equivalently, the epigraph of the function,

epi( f ) := {(x, t) ∈ C × R : t ≥ f (x)},
is a convex subset of C × R. Some authors (such as Rockafellar 1970) define f (x)

to equal +∞ for x ∈ V\C , so that the function is convex on the whole of V, and
epi( f ) is a convex subset of V × R.

This Appendix will establish several facts about convex functions and sets,
mostly for Euclidean spaces. In particular, the facts include the following results as
special cases.

(i) For a convex function f defined at least on an open interval of the real line
(possibly the whole real line), there exists a countable collection of linear
functions for which f (x) = supi∈N (αi + βi x) on that interval.

(ii) If a real-valued function f has an increasing, real-valued right-hand derivative
at each point of an open interval, then f is convex on that interval. In
particular, if f is twice differentiable, with f ′′ ≥ 0, then f is convex.
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(iii) If a convex function f on a convex subsetC ⊆ R
n has a local minimum at

a point x0, that is, if f (x) ≥ f (x0) for all x in a neighborhood ofx0, then
f (w) ≥ f (x0) for all w in C.

(iv) If C1 and C2 are disjoint convex subsets ofR
n then there exists a nonzero

� in R
n for which supx∈C1

x · � ≤ infx∈C2 x · �. That is, the linear functional
x �→ x · � separates the two convex sets.

2. One-sided derivatives

Let f be a convex function, defined and real-valued at least on an intervalJ of the
real line.

Consider any three pointsx1 < x2 < x3, all in J . (For the moment, ignore
the point x0 shown in the picture.) Writeα for (x2 − x1)/(x3 − x1), so that
x2 = αx3 + (1 − α)x1. By convexity, y2 := α f (x3) + (1 − α) f (x1) ≥ f (x2). Write
S(xi , xj ) for

(
f (xj ) − f (xi )

)
/(xj − xi ), the slope of the chord joining the points

(xi , f (xi )) and (xj , f (xj )). Then

S(x2, x3) = f (x3) − f (x2)

x3 − x2

≥ f (x3) − y2

x3 − x2
= S(x1, x3) = y2 − f (x1)

x2 − x1

≥ f (x2) − f (x1)

x2 − x1
= S(x1, x2).

x1 x2 x3x0

slope S(x0,x1)
y2

slope S(x1,x3)

slope S(x2,x3)

slope S(x1,x2)

From the second inequality it follows thatS(x1, x) decreases asx decreases
to x1. That is, f has right-hand derivativeD+(x1) at x1, if there are points ofJ
that are larger thanx1. The limit might equal−∞, as in the case of the function
f (x) = −√

x defined onR
+, with x1 = 0. However, if there is at least one pointx0

of J for which x0 < x1 then the limit D+(x1) must be finite: Replacing{x1, x2, x3}
in the argument just made by{x0, x1, x2}, we haveS(x0, x1) ≤ S(x1, x2), implying
that −∞ < S(x0, x1) ≤ D+(x1).

The inequalityS(x1, x) ≤ S(x1, x2) ≤ S(x2, x ′) if x1 < x < x2 < x ′, leads to the
conclusion thatD+ is an increasing function. Moreover, it is continuous from the
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right, because

D+(x2) ≤ S(x2, x3) → S(x1, x3) as x2 ↓ x1, for fixed x3

→ D+(x1) as x3 ↓ x1.

Analogous arguments show that S(x0, x1) increases to a limit D−(x1) as x0

increases to x1. That is, f has left-hand derivative D1(x1) at x1, if there are points
of J that are smaller than x1.

If x1 is an interior point of J then both left-hand and right-hand derivatives
exist, and D−(x1) ≤ D+(x1). The inequality may be strict, as in the case where
f (x) = |x | with x1 = 0. The left-hand derivative has properties analogous to those
of the right-hand derivative. The following Theorem summarizes.

<1> Theorem. Let f be a convex, real-valued function defined (at least) on a bounded
interval [a, b] of the real line. The following properties hold.

(i) The right-hand derivative D+(x) exists,

f (y) − f (x)

y − x
↓ D+(x) as y ↓ x,

for each x in [a, b). The function D+(x) is increasing and right-continuous
on [a, b). It is finite for a < x < b, but D+(a) might possibly equal −∞.

(ii) The left-hand derivative D−(x) exists,

f (x) − f (z)

x − z
↑ D−(x) as z ↑ x,

for each x in (a, b]. The function D−(x) is increasing and left-continuous
function on (a, b]. It is finite for a < x < b, but D−(b) might possibly
equal +∞.

(iii) For a ≤ x < y ≤ b,

D+(x) ≤ f (y) − f (x)

y − x
≤ D−(y).

(iv) D−(x) ≤ D+(x) for each x in (a, b), and

f (w) ≥ f (x) + c(w − x) for all w in [a, b],

for each real c with D−(x) ≤ c ≤ D+(x).

Proof. Only the second part of assertion (iv) remains to be proved. For w > x use

f (w) − f (x)

w − x
= S(x, w) ≥ D+(x) ≥ c;

for w < x use
f (x) − f (w)

x − w
= S(w, x) ≤ D−(x) ≤ c,

where S(·, ·) denotes the slope function, as above.�
<2> Corollary. If a convex function f on a convex subset C ⊆ R

n has a local
minimum at a point x0, that is, if f (x) ≥ f (x0) for all x in a neighborhood of x0,
then f (w) ≥ f (x0) for all w in C .
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Proof. Consider first the case n = 1. Suppose w ∈ C with w > x0. The right-hand
derivative D+(x0) = limy↓x0 ( f (y) − f (x0)) /(y − x0) must be nonnegative, because
f (y) ≥ f (x0) for y near x0. Assertion (iv) of the Theorem then gives

f (w) ≥ f (x0) + (w − x0)D+(x0) ≥ f (x0).

The argument for w < x0 is similar.
For general R

n , apply the result for R along each straight line through x0.�
Existence of finite left-hand and right-hand derivatives ensures that f is

continuous at each point of the open interval (a, b). It might not be continuous at
the endpoints, as shown by the example

f (x) =
{

−√
x for x > 0

1 for x = 0.

Of course, we could recover continuity by redefining f (0) to equal 0, the value of
the limit f (0+) := limw↓0 f (w).

<3> Corollary. Let f be a convex, real-valued function on an interval [a, b]. There
exists a countable collection of linear functions di + ciw, for which the convex
function ψ(w) := supi∈N (di + ciw) is everywhere ≤ f (w), with equality except
possibly at the endpoints w = a or w = b, where ψ(a) = f (a+) and ψ(b) = f (b−).

Proof. Let X0 := {xi : i ∈ N} be a countable dense subset of (a, b). Define
ci := D+(xi ) and di := f (xi )−ci xi . By assertion (iv) of the Theorem, f (w) ≥ di +ciw

for a ≤ w ≤ b for each i , and hence f (w) ≥ ψ(w).
If a < w < b then (iv) also implies that f (xi ) ≥ f (w) + (xi − w)D+(w), and

hence

ψ(w) ≥ f (xi ) + ci (w − xi ) ≥ f (w) − (xi − w) (D+(xi ) − D+(w)) for all xi .

Let xi decrease to w (through X0) to conclude, via right-continuity of D+ at w, that
ψ(w) ≥ f (w).

If D+(a) > −∞ then f is continuous at a, and

f (a) ≥ ψ(a) ≥ lim sup
xi ↓a

( f (xi ) + (a − xi )ci ) = f (a+) = f (a).

If D+(a) = −∞ then f must be decreasing in some neighborhood N of a, with
ci < 0 when xi ∈ N, and

ψ(a) ≥ sup
xi ∈N

( f (xi ) + (a − xi )ci ) ≥ sup
xi ∈N

f (xi ) = f (a+).

If ψ(a) were strictly greater than f (a+), the open set

{w : ψ(w) > f (a+)} = ∪i {w : di + ciw > f (a+)}
would contain a neighborhood of a, which would imply existence of points
w in N\{a} for which ψ(w) > f (a+) ≥ f (w), contradicting the inequality
ψ(w) ≤ f (w). A similar argument works at the other endpoint.�

3. Integral representations

Convex functions on the real line are expressible as integrals of one-sided derivatives.




