Appendix C
Convexity

SECTION 1 defines convex sets and functions.

SECTION 2 shows that convex functions defined on subintervals of the real line have |eft-
and right-hand derivatives everywhere.

SECTION 3 shows that convex functions on the real line can be recovered as integrals of
their one-sided derivatives.

SECTION 4 shows that convex subsets of Euclidean spaces have nonempty relative interiors.
SECTION 5 derives various facts about separation of convex sets by linear functions.

1. Convex sets and functions

A subset C of a vector space is said to be convex if it contains al the line segments
joining pairs of its points, that is,

ax1+ (L —-—a)xp eC fordl x;,xpeCandal 0 <o < 1.

A real-valued function f defined on a convex subset C (of a vector space V) is said
to be convex if

flaxi+ (1 —a)x) <af(x) + (1 —a)f(x) foral x;,x>eCand0 <o < 1.
Equivaently, the epigraph of the function,
epi(f):={(x,) eCxR:t> f(x)},

is a convex subset of C x R. Some authors (such as Rockafellar 1970) define f (x)
to equal +oo for x € V\C, so that the function is convex on the whole of V, and
epi(f) is aconvex subset of V x R.

This Appendix will establish severa facts about convex functions and sets,
mostly for Euclidean spaces. In particular, the facts include the following results as
special cases.

(i) For a convex function f defined at least on an open interval of the real line
(possibly the whole real line), there exists a countable collection of linear
functions for which f(x) = sup;y (@i + Bix) on that interval.

(ii) If areal-valued function f has an increasing, real-valued right-hand derivative
at each point of an open interval, then f is convex on that interval. In
particular, if f istwice differentiable, with f” > 0, then f is convex.
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(iii) If a convex function f on a convex subse&l € R" has a local minimum at
a point xg, that is, if f(x) > f(xg) for all x in a neighborhood oko, then
f(w) > f(xp) for all win C.

(iv) If C1 andC, are disjoint convex subsets &" then there exists a nonzero

€ in R" for which sup.c, x - £ < infycc, X - €. That is, the linear functional
X — X - £ separates the two convex sets.

One-sided derivatives

Let f be a convex function, defined and real-valued at least on an intérefithe
real line.

Consider any three pointg < x2 < xs, all in J. (For the moment, ignore
the pointxy shown in the picture.) Writex for (xo — x1)/(Xs — X1), so hat
X2 = axz + (1 — a)x1. By convexity,y» := af (x3) + (1 — ) f (X1) > f(x2). Write
S(xi, %) for (f(x)) — f(x))/(x — %), the slope of the chord joining the points
i, (X)) and (Xj, f(Xj)). Then

f(xa) — f(x2)

S(X2, X3) =
X3 — X2

f(x3) — — f(x
. (X3) —y2 _ S(x1. Xa) = Y2 (X1)

X3 — X2 X2 — X1

f(x2) — f(x1)
> ————— = S(Xq1, X2).
X2 — X1
slope S(x,,X5)
slope S(x,,X5) \
slope S(x,X,)

slope S(x,,X,)

From the second inequality it follows th&(x1, x) decreases as decreases
to x1. That is, f has right-hand derivativ®_ (x;) at x3, if there are points of
that are larger tham;. The limit might equal-oco, as in the case of the function
f (x) = —/x defined onR™, with x; = 0. However, if there is at least one poixt
of J for which xg < x;1 then the limitD, (x;) must be finite: Replacingxi, X2, X3}
in the argument just made by, X1, X2}, we haveS(xp, x1) < S(x1, X2), implying
that —oo < S(xg, X1) < D, (X1).

The inequalityS(x1, X) < S(x1, X2) < S(x2, X') if X1 < X < X2 < X/, leads to the
conclusion thatD, is an increasing function. Moreover, it is continuous from the
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right, because
D.(X2) < S(X2, X3) = S(X1, X3) as X | x1, for fixed x3
— Di(x2) as X3 | X1.
Analogous arguments show that S(xg, x1) increases to a limit D_(x;) as Xo

increases to x;. That is, f has left-hand derivative D1(x1) at x1, if there are points
of J that are smaller than x;.

If x1 is an interior point of J then both left-hand and right-hand derivatives
exist, and D_(x1) < D, (x1). The inequality may be strict, as in the case where
f(x) = |x| with x; = 0. The left-hand derivative has properties analogous to those
of the right-hand derivative. The following Theorem summarizes.

<1> Theorem. Let f beaconvex, real-valued function defined (at least) on a bounded
interval [a, b] of the real line. The following properties hold.
(i) The right-hand derivative D, (x) exists,
f(y) — f(x)
y —X
for each x in[a, b). The function D (x) is increasing and right-continuous
onla,b). Itisfinite fora < x < b, but D, (a) might possibly equal —cc.
(ii) The left-hand derivative D_(x) exists,
f(x)— f(2
EEvE—— T D_(X) aszt X,

for each x in (a, b]. The function D_(x) is increasing and left-continuous
function on (a, b]. It is finite for a < x < b, but D_(b) might possibly
equal +oo.

(iii) Fora<x<y<bh,

1 DX asyl X

f(y)— f(x)

Di(x) < >

= D_(y.

(iv) D_(x) < D, (x) for each x in (a, b), and
f(w) > f(X) +c(w—X) for al win [a, b],
for each real ¢ with D_(x) < ¢ < D,(X).
Proof. Only the second part of assertion (iv) remains to be proved. For w > x use

T =10 _ g uy > Do) > c

w — X

for w < x use f f
100 =T _ g %) < Do <.

X—w

O where S(-, -) denotes the slope function, as above.

<2> Corollary. If a convex function f on a convex subset C € R" has a local
minimum at a point xo, that is, if f(x) > f(xg) for al x in a neighborhood of xg,
then f(w) > f(xg) for al w inC.



<3>
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Proof. Consider first the case n = 1. Suppose w € C with w > xg. The right-hand
derivative D4 (Xo) = limy,, (f(y) — f(X0)) /(y — Xo) must be nonnegative, because
f(y) > f(xo) for y near xo. Assertion (iv) of the Theorem then gives

f(w) > f(Xo) + (w — X0) D4 (Xo) > f(X0).

The argument for w < Xg is similar.
For general R", apply the result for R along each straight line through xo.
Existence of finite left-hand and right-hand derivatives ensures that f is
continuous at each point of the open interval (a, b). It might not be continuous at
the endpoints, as shown by the example
foxy= 1 —vx forx>0
) { 1 for x =0.
Of course, we could recover continuity by redefining f (0) to equal O, the value of
the limit f (0+) :=lim, 0 f(w).
Corollary. Let f be a convex, real-valued function on an interval [a, b]. There
exists a countable collection of linear functions d; + c,w, for which the convex
function v (w) = sup;y (di + Ciw) is everywhere < f(w), with equality except
possibly at the endpoints w = a or w = b, where v (a) = f(a+) and v (b) = f(b—).
Proof. Let Xo := {X : i € N} be a countable dense subset of (a,b). Define
G :=D,(x)andd = f(x)—cx. By assertion (iv) of the Theorem, f (w) > di+cw
fora<w < bforeachi, and hence f(w) > ¥ (w).
If a < w < b then (iv) aso implies that f(x) > f(w) + (x — w)D,(w), and
hence
Y(w) > f(x)+ci(w—x)> fw) — (6 —w) (Di(X) — Dy(w)) for all ;.

Let x; decrease to w (through Xp) to conclude, via right-continuity of D, at w, that
Y(w) > f(w).
If D.(a) > —oo then f is continuous at a, and

f(@>vy(@ >limsup(f(x)+ @—x)c) = fa+) = f(a).

Xila
If D,(a) = —oo then f must be decreasing in some neighborhood N of a, with
¢ < Owhen x € N, and

Y@ =sup (f(x)+@—x)c) =>sup f(x) = f(a+).
Xj eN Xi N

If ¥ (a) were strictly greater than f (a+), the open set
{fw:vw) > f@h)}=U{w:d +cqw > f(@at+)}
would contain a neighborhood of a, which would imply existence of points

w in N\{a} for which v(w) > f(a+) > f(w), contradicting the inequality
¥(w) < f(w). A similar argument works at the other endpoint.

Integral representations

Convex functions on the real line are expressible as integrals of one-sided derivatives.





