
lars/lasso 1

Homework 9 stepped you through the lasso modification of the LARS
algorithm, based on the papers by Efron, Hastie, Johnstone, and Tibshirani
(2004) (= the LARS paper) and by Rosset and Zhu (2007).

I made a few small changes to the algorithm in the LARS paper. I used
the diabetes data set in R (the data used as an illustration in the LARS
paper) to test my modification:

library(lars)

data(diabetes) # load the data set

LL = lars(diabetes$x,diabetes$y,type="lasso")

plot(LL,xvar="step") # one variation on the usual plot
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My modified algorithm getlasso() produces the same sequence of coeffi-
cients as the R function lars() when run on the diabetes data set:

J= getlasso(diabetes$y,diabetes$x)

round(LL$bet[-1,]-t(J$output["coef.end",,]),6)# gives all zeros

I am fairly confident that my changes lead to the same sequences of lasso
fits. I find my plots, which are slightly different from those produced by the
lars library, more helpful for understanding the algorithm:
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show2(J) # my plot

0 949.4889.3452.9316.1130.1

0

-949.4

949.4

Cj's

age, tc, ldl

sex

bmi, ltg

map, tch, glu

hdl

0

-792.2

751.3
bj's

age, glu

sex

bmi, ldl
map

tc

hdl, tch

ltg

Modified lasso algorithm for diabetes data

[For higher resolution, see the pdf files attached to this handout.]

1 The Lasso problem

The problem is: given an n×1 vector y and an n×p matrix X, find the b̂(λ)
that minimizes

Lλ(b) = ‖y −Xb‖2 + 2λ
∑
|bj|

for each λ ≥ 0. [The extra factor of 2 eliminates many factors of 2 in what
follows.] The columns of X will be assumed to be standardized to have zero
means and ‖Xj‖ = 1. I also seem to need linear independence of various
subsets of columns of X, which would be awkward if p were larger than n.

Remark. I thought the vector y was also supposed to have a zero mean. That
is not the case for the diabetes data set in R. It does not seem to be needed
for the algorithm to work.

I will consider only the “one at a time”case (page 417 of the LARS paper),
for which the “active set” of predictors Xj changes only by either addition
or deletion of a single predictor.
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2 Directional derivative

The function Lλ has derivative at b in the direction u defined by

L•λ(b, u) = lim
t↓0

Lλ(b+ tu)− Lλ(b)
t

= 2
∑

j
λD(bj, uj)− (y −Xb)′Xjuj<1>

where D(bj, uj) = uj{bj > 0} − uj{bj < 0}+ |uj|{bj = 0}.

By convexity, a vector b minimizes Lλ if and only if L•λ(b, u) ≥ 0 for every u.
Equivalently, for every j and every uj the jth summand in <1> must be non-
negative. [Consider u vectors with only one nonzero component to establish
this equivalence.] That is, b minimizes Lλ if and only if

λD(bj, uj) ≥ (y −Xb)′Xjuj for every j and every uj

When bj 6= 0 the inequalities for uj = ±1 imply an equality; for bj = 0 we
get only the inequality. Thus b minimizes Lλ if and only if

λ = X ′jR if bj > 0
λ = −X ′jR if bj < 0
λ ≥ |X ′jR| if bj = 0

where R := y −Xb

The LARS/lasso algorithm recursively calculates a sequence of break-
points ∞ > λ1 > λ2 > · · · ≥ 0 with b̂(λ) linear for each interval λk+1 ≤ λ ≤
λk. Define “residual” vector and “correlations”

R(λ) := y −Xb̂(λ) and Cj(λ) := X ′jR(λ).

Remark. To get a true correlation we would have to divide by ‖R(λ)‖, which
would complicate the constraints.

The algorithm will ensure that
λ = Cj(λ) if b̂j(λ) > 0 (constraint ⊕)

λ = −Cj(λ) if b̂j(λ) < 0 (constraint 	)

λ ≥ |Cj(λ)| if b̂j(λ) = 0 (constraint �)

<2>

That is, for the minimizing b̂(λ) each (λ,Cj(λ)) needs to stay inside the region
R = {(λ, c) ∈ R+×R : |c| ≤ λ}, moving along the top bounday (c = λ) when
bj(λ) > 0 (constraint ⊕), along the lower boundary (c = −λ) when b̂j(λ) < 0

(constraint 	), and being anywhere in R when b̂j(λ) = 0 (constraint �).
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3 The algorithm

The solution b̂(λ) is continuous in λ and linear on intervals defined by change
points ∞ = λ0 > λ1 > λ2 > · · · > 0. The construction proceeds in steps,
starting with large λ and working towards λ = 0. The vector of fitted values
f̂(λ) = Xb̂(λ) is also piecewise linear. Within each interval (λk+1, λk) only
the “active subset” A = Ak = {j : b̂j(λ) 6= 0} of the coefficients changes; the
inactive coefficients stay fixed at zero.

3.1 Some illuminating special cases

It helped me to work explicitly through the first few steps before thinking
about the equations that define a general step in the algorithm.

Start with A0 = ∅ and b̂(λ) = 0 for λ ≥ λ1 := max |X ′jy|. Constraint �
is satisfied on [λ1,∞).

Step 1.

Constraint � would be violated if we kept b̂(λ) equal to zero for λ < λ1,
because we would have maxj |Cj(λ)| > λ. The b̂(λ) must move away from
zero as λ decreases below λ1.

We must have |Cj(λ1)| = λ1 for at least one j. For convenience of ex-
position, suppose C1(λ1) = λ1 > |Cj(λ1)| for all j ≥ 2. The active set now
becomes A = {1}.

For λ2 ≤ λ < λ1, with λ2 to be specified soon, keep b̂j(λ) = 0 for j ≥ 2
but let

b̂1(λ) = 0 + v1(λ1 − λ)

for some constant v1. To maintain the equalities

λ = C1(λ) = X ′1(y −X1b̂1(λ))

= C1(λ1)−X ′1X1v1(λ1 − λ) = λ1 − v1(λ1 − λ)

we need v1 = 1. This choice also ensures that b̂1(λ) > 0 for a while, so that ⊕
is the relevant constraint for b̂1.

For λ < λ1, with v1 = 1 we have R(λ) = y −X1(λ1 − λ) and

Cj(λ) = Cj(λ1)− aj(λ1 − λ) where aj := X ′jX1.

Notice that |aj| < 1 unless Xj = ±X1. Also, as long as maxj≥2 |Cj(λ)| ≤ λ

the other b̂j’s still satisfy constraint �.
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We need to end the first step at λ2, the largest λ less than λ1 for which
maxj≥2 |Cj(λ)| = λ. Solve for Cj(λ) = ±λ for each fixed j ≥ 2:

λ = λ1 − (λ1 − λ) = Cj(λ1)− aj(λ1 − λ)

−λ = −λ1 + (λ1 − λ) = Cj(λ1)− aj(λ1 − λ)

if and only if

λ1 − λ = (λ1 − Cj(λ1)) /(1− aj)
λ1 − λ = (λ1 + Cj(λ1)) /(1 + aj)

Both right-hand sides are strictly positive. Thus λ2 = λ1 −∆λ where

∆λ := minj≥2 min

(
λ1 − Cj(λ1)

1− aj
,
λ1 + Cj(λ1)

1 + aj

)
<3>

Second step.

We have C1(λ2) = λ2 = maxj≥2 |Cj(λ2)|, by construction. For convenience
of exposition, suppose |C2(λ2)| = λ2 > |Cj(λ2)| for all j ≥ 3. The active set
now becomes A = {1, 2}.

To emphasize a subtle point it helps to consider separately two cases.
Write s2 for sign(C2(λ2)), so that C2(λ2) = s2λ2.

case s2 = +1:
For λ3 ≤ λ < λ2 and a new v1 and v2 (Note the recycling of notation.), define

b̂1(λ) = b̂1(λ2) + (λ2 − λ)v1

b̂2(λ) = 0 + (λ2 − λ)v2

with all other b̂j’s still zero. Write Z for [X1, X2]. The new Cj’s become

Cj(λ) = X ′j

(
y −X1b̂1(λ)−X2b̂2(λ)

)
= Cj(λ2)− (λ2 − λ)X ′jZv where v′ = (v1, v2).

We keep C1(λ) = C2(λ) = λ if we choose v to make X ′1Zv = 1 = X ′2v. That
is, we need

v = (Z ′Z)−11 with 1 = (1, 1)′.

Of course we must assume that X1 and X2 are linearly independent for Z ′Z
to have an inverse.
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case s2 = −1:
For λ3 ≤ λ < λ2 and a new v1 and v2, define

b̂1(λ) = b̂1(λ2) + (λ2 − λ)v1

b̂2(λ) = 0− (λ2 − λ)v2 (note the change of sign)

with all other b̂j’s still zero. Write Z for [X1,−X2]. The tricky business with
the signs ensures that

Xb̂(λ)−Xb̂(λ2) = X1(λ2 − λ)v1 −X2(λ2 − λ)v2 = (λ2 − λ)Zv.

The new Cj’s become

Cj(λ) = X ′j

(
y −X1b̂1(λ)−X2b̂2(λ)

)
= Cj(λ2)− (λ2 − λ)X ′jZv.

We keep C1(λ) = −C2(λ) = λ if we choose v to make X ′1Zv = 1 = −X ′2v.
That is, again we need v = (Z ′Z)−11.

Remark. If we had assumed C1(λ1) = −λ1 thenX1 would be replaced by−X1

in the Z matrix, that is, Z = [s1X1, s2X2] with s1 = sign(C1(λ1)) and s2 =
sign(C2(λ2)).

Because b̂1(λ2) > 0, the correlation C1(λ) stays on the correct boundary
for the ⊕ constraint. If s2 = +1 we need v2 > 0 to keep b̂2(λ) > 0 and
C2(λ) = λ, satisfying ⊕. If s2 = −1 we also need v2 > 0 to keep b̂2(λ) < 0
and C2(λ) = −λ, satisfying 	. That is, in both cases we need v2 > 0.

Why do we get a strictly positive v2? Write ρ for s2X
′
2X1. As the Z ′Z

matrix is nonsingular we must have |ρ| < 1 so that

v =

(
1 ρ
ρ 1

)−1

1 = (1− ρ2)−1

(
1 −ρ
−ρ 1

)
1

and v2 = v1 = (1− ρ)/(1− ρ2) > 0.
If no further Cj(λ)’s were to hit the ±λ boundary, step 2 could continue

all the way to λ = 0. More typically, we would need to create a new active
set at the largest λ3 strictly smaller than λ2 for which maxj≥3 |Cj(λ)| = λ.

For the general step there is another possible event that would require a
change to the active set: one of the b̂j(λ)’s in the active set might hit zero,
threatening to change sign and leave the corresponding Cj(λ) on the wrong
boundary.

I could pursue these special cases further, but it is better to start again
for the generic step in the algorithm.
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3.2 The general algorithm

Once again, start with A0 = ∅ and b̂(λ) = 0 for λ ≥ λ1 := max |X ′jy|.
Constraint � is satisfied on [λ1,∞).

At each λk a new active set Ak is defined. During the kth step the param-
eter λ decreases from λk to λk+1. For all j’s in the active set Ak, the coeffi-
cients b̂j(λ) change linearly and the Cj(λ)’s move along one of the boundaries

of the feasible region: Cj(λ) = λ if b̂j(λ) > 0 and Cj(λ) = −λ if b̂j(λ) < 0.

For each inactive j the coefficient b̂j(λ) remains zero throughout [λk+1, λk].
Step k ends when either an inactive Cj(λ) hits a ±λ boundary or if an

active b̂j(λ) becomes zero: λk+1 is defined as the largest λ less than λk for
which either of these conditions holds:

(i) maxj /∈Ak
|Cj(λ)| = λ. In that case add the new j ∈ Ack for which

|Cj(λk+1)| = λk+1 to the active set, then proceed to step k + 1.

(ii) b̂j(λ) = 0 for some j ∈ Ak. In that case, remove j from the active set,
then proceed to step k + 1.

For the diabetes data, the alternative (ii) caused the behavior shown below
for 1.3 ≤ λ ≤ 2.2.
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Modified lasso algorithm for diabetes data

I will show how the Cj(λ)’s and the b̂j(λ)’s can be chosen so that the
conditions <2> are always satisfied.
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At the start of step k (with λ = λk), define Z = [sjXj : j ∈ Ak], where
sj := sign(Cj(λ)). That is, Z has a column for each active Xj predictor,
with the sign flipped if the corresponding Cj(λ) is moving along the −λ
boundary. Define v := (Z ′Z)−11. For λk+1 ≤ λ ≤ λk the active coefficients
change linearly,

b̂j(λ) = b̂j(λk) + (λk − λ)vjsj for j ∈ Ak.<4>

The “fitted vector”,

f̂(λ) := Xb̂(λ) = f̂(λk) +
∑

j∈Ak

Xj

(
b̂j(λ)− b̂j(λk)

)
= f̂(λk) + (λk − λ)Zv,

the “residuals”,

R(λ) := y − f̂(λ) = R(λk)− (λk − λ)Zv,

and the “correlations”,

Cj(λ) := X ′jR(λ) = Cj(λk)− (λk − λ)aj where aj := X ′jZv,<5>

also change linearly. In particular, for j ∈ Ak,

Cj(λ) = sjλk − (λk − λ)sjZ
′
jZv = sjλ because Z ′jZ(Z ′Z)−11 = 1.

The active Cj(λ)’s move along one of the boundaries ±λ of R.
Remember that I am assuming the “one at a time” condition: the active

set changes only by addition of one new predictor in case (i) or by dropping
one predictor in case (ii).

Suppose index α enters the active set via (i) when λ equals λk+1 then
leaves it via (ii) when λ equals λ`+1. (If α never leaves the active set
put λ`+1 equal to 0.) Throughout the interval (λ`+1, λk+1) both sign(Cα(λ))
and sign(b̂αλ)) stay constant. To ensure that all constraints are satisfied it
is enough to prove:

(a) For λ only slightly smaller than λk+1, both Cα(λ) and b̂α(λ) have the
same sign.

(b) For λ only slightly smaller than λ`+1, constraint � is satisfied, that is,
|Cα(λ)| ≤ λ.
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The analyses are similar for the two cases. They both depend on a neat
formula for inversion of symmetric block matrices. Suppose A is an m ×m
nonsingular, symmetric matrix and d is an m × 1 vector for which κ :=
1− d′A−1d 6= 0. Then(

A d
d′ 1

)−1

=

(
A−1 + ww′/κ −w/κ

−w′/κ 1/κ

)
where w := A−1d .<6>

This formula captures the ideas involved in Lemma 4 of the LARS paper.
For simplicity of notation, I will act in both cases (a) and (b) as if the α

is larger than all the other j’s that were in the active set. (More formally, I
could replace X in what follows by XE for a suitable permutation matrix E.)
The old and new Z matrices then have the block form shown in <6>.

Case (a): α enters the active set at λk+1

As for the analysis that led to the expression in <3>, the solutions for λ =
|Cj(λ)| with j ∈ Ack are given by

(λk − λ)(1− aj) = λk − Cj(λk) to get λ = Cj(λ)

(λk − λ)(1 + aj) = λk + Cj(λk) to get − λ = Cj(λ)

Index α is brought into the active set because |Cα(λk+1)| = λk+1. Thus

(λk − λ′k+1)(1− sαaα) = λk − sαCα(λk) where sα := sign(Cα(λ′k+1)).

Note that |Cα(λk)| < λk because α was not active during step k. It follows
that the right-hand side of the last equality is strictly positive, which implies

1− sαaα > 0.<7>

Throughout a small neighborhood of λk+1 the sign sα of Cα(λ) stays the
same. Continue to write Z for the active matrix [sjXj; j ∈ Ak] for λ slightly
larger than λk+1 and denote by

Z̃ = [sjXj; j ∈ Ak+1] = [Z, sαXα]

the new active matrix for λ slightly small than λk+1. Then

Z̃ ′Z̃ =

(
Z ′Z d

d′ 1

)
where d := sαZ

′Xα .
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Notice that

1− κ = d′A−1d = X ′αZ(Z ′Z)−1Z ′Xα = ‖HXα‖2 ,

where H = Z(Z ′Z)−1Z ′ is the matrix that projects vectors orthogonally
onto span(Z). If Xα /∈ span(Z) then ‖HXα‖ < ‖Xα‖ = 1 so that κ > 0.
From <6>,

(Z̃ ′Z̃)−1 =

(
(Z ′Z)−1 + ww′/κ −w/κ

−w′/κ 1/κ

)
where w := sα(Z ′Z)−1Z ′Xα .<8>

The αth coordinate of the new ṽ = (Z̃ ′Z̃)−11 equals ṽα = κ−1 (1− w′1),
which is strictly positive because

1− w′1 = 1− sαX ′αZ(Z ′Z)−11

= 1− sαX ′αZv
= 1− sαaα by <5>

> 0 by <7>.

By <4>, the new b̂α(λ) = (λk+1 − λ)ṽαsα has the same sign, sα, as Cα(λ).

Case (b): α leaves the active set at λ = λ`+1

The roles of Z = [sjXj : 1 ≤ j < α] and Z̃ = [Z, sαXα] are now re-

versed. For λ slightly larger than λ`+1 the active matrix is Z̃, and both
Cα(λ) and b̂α(λ) have sign sα.

Index α leaves the active set because b̂α(λ`+1) = 0. Thus

0 = b̂α(λ`) + (λ` − λ`+1)ṽαsα

where sα := sign(Cα(λ`)) and ṽ = (Z̃ ′Z̃)−11. The active b̂α(λ`) also had
sign sα. Consequently, we must have

ṽα < 0.<9>

For λ slightly smaller than λ`+1 the active matrix is Z, and, by <5>,

sαCα(λ) = λ`+1 − (λ`+1 − λ)sαaα where aα := X ′αZv

= λ+ (λ`+1 − λ)(1− sαaα)

Statistics 312/612, Fall 2010
c©David Pollard



lars/lasso 11

We also know that

0 > κṽα = 1− w′1 = 1− sαaα.

Thus sαCα(λ) < λ, and hence |Cα(λ)| < λ, for λ slightly less than λ`+1. The
new Cα(λ) satisfies constraint ⊕ as it heads off towards the other boundary.

Remark. Clearly there is some sort of duality accounting for the similarities
in the arguments for cases (a) and (b), with <6> as the shared mechanism. If
we think of λ as time, case (b) is a time reversal of case (a). For case (a) the
defining condition (Cα hits the boundary) at λk+1 gives 1− sαvα > 0, which
implies vα > 0. For case (b), the defining condition (b̂α hits zero) at λ`+1

gives ṽa < 0, which implies 1− sαaα < 0.
Is there some clever way to handle both cases by a duality argument?

Maybe I should read more of the LARS paper.

4 My getlasso() function

I wrote the R code in the file lasso.R to help me understand the algorithm
described in the LARS paper. The function is not particularly elegant or
efficient. I wrote in a way that made it easy to examine the output from
each step. If verbose=T, lots of messages get written to the console and the
function pauses after each step. I also used some calls to browser() while
tracking down some annoying bugs related to case (b).

d.p. 1 December 2010
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