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1 Studies in crop variation

R. A. Fisher created a lot of statistical theory (which is still heavily used)
while working at Rothamsted agricultural research station. In particular,
Fisher developed a method of designing and analyzing complex experiemnts.
(For more about the history see a presentation by Roger Payne.)

In a important early paper, Eden and Fisher
(1927) described a way to compare the effects of
various fertilizer treatments on the yield of grain
(Grey Winter oats). They had two different ni-
trogen fertilizers (M = muriate of ammonia, S =
sulphate of ammonia), applied in three different
amounts (0, 1, or 2 cwt/acre), at two different
stages of crop growth (E= early, L= late). They
assigned the “treatments” to 96 plots of size 1/40
acre, arranged in 8 blocks of 12 plots each. Within
each block, they assigned “treatments” to plots in
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a random order: 4 plots with no treatment (that
is, amount = 0), and each of the eight possible
combinations of {M,S}, {1, 2}, and {E,L} ap-

pearing once.
The random allocation was intended to offset differences in fertility be-

tween different plots within each block, which were known to exist. (You
can see these differences by looking at just the yields for the no-treatment
plots, the red X’s in the next plot.)
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Grain yields (pounds) by block

block
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ai

n

## I II III IV V VI VII VIII total

## none 61.38 79.25 75.50 91.50 78.62 84.62 68.88 81.25 621.00

## none 65.50 83.50 74.88 86.25 79.00 84.50 79.50 80.50 633.62

## none 68.12 83.25 62.75 88.75 83.88 87.88 63.25 89.62 627.50

## none 72.12 84.88 86.12 82.50 77.75 79.62 83.75 84.75 651.50

## 1ME 77.50 80.75 85.12 80.50 88.25 76.88 69.00 90.75 648.75

## 1ML 80.50 93.12 67.75 88.88 88.12 79.62 67.88 80.75 646.62

## 1SE 65.38 89.12 85.75 86.00 86.50 76.50 79.38 93.50 662.12

## 1SL 75.12 86.62 85.62 89.25 87.38 87.12 87.62 93.25 692.00

## 2ME 83.00 86.62 83.25 64.50 82.00 82.88 82.12 85.38 649.75

## 2ML 64.25 79.62 87.12 88.75 79.12 74.38 87.12 89.00 649.38

## 2SE 68.75 88.50 82.88 84.12 83.88 78.25 81.88 83.88 652.12

## 2SL 65.12 82.62 74.25 91.25 78.12 80.50 93.12 93.38 658.38

## total 846.75 1017.88 951.00 1022.25 992.62 972.75 943.50 1046.00 7792.75

Remark. E&F Table I gave the grain yields in eighths of a pound:
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## I II III IV V VI VII VIII total

## none 491 634 604 732 629 677 551 650 4968

## none 524 668 599 690 632 676 636 644 5069

## none 545 666 502 710 671 703 506 717 5020

## none 577 679 689 660 622 637 670 678 5212

## 1ME 620 646 681 644 706 615 552 726 5190

## 1ML 644 745 542 711 705 637 543 646 5173

## 1SE 523 713 686 688 692 612 635 748 5297

## 1SL 601 693 685 714 699 697 701 746 5536

## 2ME 664 693 666 516 656 663 657 683 5198

## 2ML 514 637 697 710 633 595 697 712 5195

## 2SE 550 708 663 673 671 626 655 671 5217

## 2SL 521 661 594 730 625 644 745 747 5267

## total 6774 8143 7608 8178 7941 7782 7548 8368 62342

If you look at the paper, be aware that some tabulations are for pounds
and some are for eighths of a pound.

The four untreated plots within each block give a way of estimating the
variability within blocks:

## lm(formula = grain ~ -1 + block, data = EFdata, subset = notreat)

## Estimate Std. Error t value Pr(>|t|)

## blockI 66.781 2.838 23.531 0

## blockII 82.719 2.838 29.147 0

## blockIII 74.812 2.838 26.361 0

## blockIV 87.250 2.838 30.743 0

## blockV 79.812 2.838 28.123 0

## blockVI 84.156 2.838 29.653 0

## blockVII 73.844 2.838 26.020 0

## blockVIII 84.031 2.838 29.609 0

## Estimate of sigma = 5.68 from 24 degrees of freedom

E&F also estimated σ using the residuals from an additive fit (not the way
they put it):

out.bt <- lm(grain ~ block + treat,EFdata)

sighat <- sqrt(sum(out.bt$res^2)/out.bt$df)

round(sighat,3) # on 80 degrees of freedom

## [1] 6.405

Using an F-test, E&F decided that the two estimates of σ were not sig-
nificantly different. They then declared that “the value derived from the
whole 80 degrees of freedom may be used with confidence”.

The analysis of variance table suggests that overall effect of the treat-
ments is only at the noise level:
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anova(out.bt)

## Analysis of Variance Table

##

## Response: grain

## Df Sum Sq Mean Sq F value Pr(>F)

## block 7 2286.4 326.63 7.9620 2.617e-07 ***

## treat 8 387.0 48.38 1.1792 0.322

## Residuals 80 3281.9 41.02

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

However, E&F also pointed out that the design of the experiment allows for
more detailed comparisons. For example, there were 32 plots for each of the
fertilizer treatments. The average yields provide a broad comparison of the
three levels:

mean.fert <- tapply(EFdata$grain,EFdata$fert,mean)

round(mean.fert,3)

## M none S

## 83.270 79.176 81.078

The difference 2.19 between the means for the M and S fertilizers is down
at the level of the (estimated) standard error for a difference of two such
averages: σ̂

√
2/32 = 1.6.

E&F commented that the only significant differences appeared to be in
the amount of fertilizer used:

round(tapply(EFdata$grain,EFdata$amount,mean),2)

## d none s

## 81.55 79.18 82.80

Remark. These numbers are different from those in the first row of
Table VI (E&F560). My numbers are about 1.04 times bigger. Maybe
that is the conversion factor for pounds to bushels, although I have my
doubts. Probably I have made a silly mistake somewhere. The effects
differences don’t look very significant to me.

It is possible to carry out formal t-tests without so much manual labor.

Draft: 30 Oct 2016 c©David Pollard 4



Stat 312/612

2 Decomposition of treatment effects

The E&F design involves a few complications that I’ll avoid by first dis-
cussing a simpler data set from Box et al. (1978, Section 10.1). The data
involve three factors: temperature (at 160 or 180 degrees Celsius), concen-
tration (at 20% or 40%), and catalyst (A or B), with the yield (in grams)
as the response in a pilot study. (BHH devoted quite a few pages to the
example.)

## Temp Conc Cat yield

## 1 160 20 A 60

## 2 180 20 A 72

## 3 160 40 A 54

## 4 180 40 A 68

## 5 160 20 B 52

## 6 180 20 B 83

## 7 160 40 B 45

## 8 180 40 B 80

As usual, the factors can be represented by dummy variables:

T2 <- bhh$Temp == "180" ; T1 <- bhh$Temp == "160"

C2 <- bhh$Conc == "40" ; C1 <- bhh$Conc == "20"

K2 <- bhh$Cat == "B" ; K1 <- bhh$Cat == "A"

or coded as variables taking the values ±1:

B <- data.frame(int=1, t=T2-T1, c=C2-C1, k=K2-K1)

B$tc <- B$t * B$c ; B$tk <- B$t * B$k ; B$ck <- B$c * B$k

B$tck <- B$t * B$c * B$k

B <- as.matrix(B)

print(B)

## int t c k tc tk ck tck

## [1,] 1 -1 -1 -1 1 1 1 -1

## [2,] 1 1 -1 -1 -1 -1 1 1

## [3,] 1 -1 1 -1 -1 1 -1 1

## [4,] 1 1 1 -1 1 -1 -1 -1

## [5,] 1 -1 -1 1 1 -1 -1 1

## [6,] 1 1 -1 1 -1 1 -1 -1
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## [7,] 1 -1 1 1 -1 -1 1 -1

## [8,] 1 1 1 1 1 1 1 1

You will see in a moment why I created the matrix B. Observe that its
columns are orthogonal, each with squared length equal to 8:

# Matrix(t(B) %*% B) # remove the comment char to see the matrix

Why are they orthogonal?
Let me drop the B$ prefix for a while. First note that

〈int, t〉 = 〈18, T2− T1〉 = 4− 4 = 0.

This equality relects the fact that Temp appears the same number of times
at each of its levels. Similarly

〈t, c〉 = 〈T2− T1, C2− C1〉
= sum(T2 ∗ C2− T1 ∗ C2− T1 ∗ C1 + T1 ∗ C1) = 2− 2− 2 + 2 = 0.

Again the orthogonality comes from balance in the design. The interactions
re more interesting.

〈t, ck〉 = sum ((T2− T1) ∗ (C2− C1) ∗ (K2−K1))

= sum (T2 ∗ C2 ∗K2− T2 ∗ C2 ∗K1 + · · · − T1 ∗ C1 ∗K1)

= 1− 1 + · · · − 1 = 0.

More balance. Finally,

〈tk, tck〉 = sum(t ∗ k ∗ t ∗ c ∗ k)

= sum(t2 ∗ c ∗ k2) = sum(1 ∗ c ∗ 1) = 0.

And so on.
If we divide each of the columns of B by

√
8 we are left with an orthonor-

mal basis for R8. The coefficients obtained from

print( bhh$yield %*% B / 8 )

## int t c k tc tk ck tck

## [1,] 64.25 11.5 -2.5 0.75 0.75 5 0 0.25
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give a representation of yield in this basis. Moreover, t/
√

8 is a unit vector
in span(T1, T2) that is orthogonal to 1. The least squares fit

lm(yield ~ Temp + Conc + Cat, bhh)

represents the component of the yield vector in the four-dimensional sub-
space span(1, T1, T2, C1, C2,K1,K2) in the new basis:

## lm(formula = yield ~ Temp + Conc + Cat, data = bhh)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 64.25 2.531 25.385 0.000

## Temp1 11.50 2.531 4.544 0.010

## Conc1 -2.50 2.531 -0.988 0.379

## Cat1 0.75 2.531 0.296 0.782

## Estimate of sigma = 7.16 from 4 degrees of freedom

Note the coefficients.
The rescaled inner product 〈bhh$yield,B$t〉/4 also has

the interpretation

mean of yields at 180◦ −mean of yields at 160◦,

which estimates the “main temperature effect”, a differ-
ence between the average (over the the other factors) ef-
fect of temperature 180◦ and the average effect of tem-
perature 160◦. Similarly, 〈bhh$yield,B$tk〉/4 equals some
multiple of the difference between the average temperature
effects at the two levels of catalyst, a measure of the inter-
action between temperature and catalyst.

Remark. I can never keep track of how many averages are involved in
these interactions. I much prefer to think of interactions as estimates of
departures from additivity under some parametrization of the model.
Compare with the estimates of main effects and interactions in the
table copied from BHH.

## lm(formula = yield ~ Temp + Conc + Cat + Temp:Cat, data = bhh)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 64.25 0.456 140.765 0.000

## Temp1 11.50 0.456 25.195 0.000
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## Conc1 -2.50 0.456 -5.477 0.012

## Cat1 0.75 0.456 1.643 0.199

## Temp1:Cat1 5.00 0.456 10.954 0.002

## Estimate of sigma = 1.29 from 3 degrees of freedom

BHH (Section 10.8):

The main effect of a factor should be individually interpreted only if there is no

evidence that the factor interacts with otl1er factors. When there is evidence of one

or more such interactions, the interacting variables must be considered jointly.

If we keep throwing in interactions we eventually run out of degrees of
freedom. We get a perfect fit, which R flags as not such a good thing.

##

## Call:

## lm(formula = yield ~ Temp * Conc * Cat, data = bhh)

##

## Residuals:

## ALL 8 residuals are 0: no residual degrees of freedom!

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.425e+01 NA NA NA

## Temp1 1.150e+01 NA NA NA

## Conc1 -2.500e+00 NA NA NA

## Cat1 7.500e-01 NA NA NA

## Temp1:Conc1 7.500e-01 NA NA NA

## Temp1:Cat1 5.000e+00 NA NA NA

## Conc1:Cat1 -1.963e-15 NA NA NA

## Temp1:Conc1:Cat1 2.500e-01 NA NA NA

##

## Residual standard error: NaN on 0 degrees of freedom

## Multiple R-squared: 1,Adjusted R-squared: NaN

## F-statistic: NaN on 7 and 0 DF, p-value: NA

3 A more complicated factorial design: confounding

Here is one of the data sets that come with R:
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data(npk)

summary(npk)

## block N P K yield

## 1:4 0:12 0:12 0:12 Min. :44.20

## 2:4 1:12 1:12 1:12 1st Qu.:49.73

## 3:4 Median :55.65

## 4:4 Mean :54.88

## 5:4 3rd Qu.:58.62

## 6:4 Max. :69.50

We have 6 blocks (a factor on 6 levels), each of size 4, and 3 factors
(N,P,K), each at 2 levels. Clearly there is not enough room in each block
to make comparisons between all 8 ways of combining the other factors.

out0 <- lm(yield ~ block + N*P*K,npk); anova(out0)

## Analysis of Variance Table

##

## Response: yield

## Df Sum Sq Mean Sq F value Pr(>F)

## block 5 343.29 68.659 4.4467 0.015939 *

## N 1 189.28 189.282 12.2587 0.004372 **

## P 1 8.40 8.402 0.5441 0.474904

## K 1 95.20 95.202 6.1657 0.028795 *

## N:P 1 21.28 21.282 1.3783 0.263165

## N:K 1 33.13 33.135 2.1460 0.168648

## P:K 1 0.48 0.482 0.0312 0.862752

## Residuals 12 185.29 15.441

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

What happened to the N:P:K interaction?
The RSS has 12 degrees of freedom. The design subspace of R24 spanned

by all the dummy variables must have dimension 12. The degrees of freedom
in the table only add to 11, because the intercept term does not count as
interesting for anova purposes. Note the 5 degrees of freedom for the blocks.
That leaves only 6 degrees of freedom for N, P, K and their interactions.

For consistency with my approach in the other examples of experimental
design I’ll also (invisibly) modify the factors N,P,K to use Helmert con-
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trasts and I’ll omit the intercept term, rather than have it taken out of the
block subspace:

## lm(formula = yield ~ -1 + block + N * P * K, data = npkH)

## Estimate Std. Error t value Pr(>|t|)

## block1 54.025 1.965 27.498 0.000

## block2 57.450 1.965 29.241 0.000

## block3 60.775 1.965 30.933 0.000

## block4 50.125 1.965 25.512 0.000

## block5 50.525 1.965 25.716 0.000

## block6 56.350 1.965 28.681 0.000

## N1 2.808 0.802 3.501 0.004

## P1 -0.592 0.802 -0.738 0.475

## K1 -1.992 0.802 -2.483 0.029

## N1:P1 -0.942 0.802 -1.174 0.263

## N1:K1 -1.175 0.802 -1.465 0.169

## P1:K1 0.142 0.802 0.177 0.863

## Estimate of sigma = 3.93 from 12 degrees of freedom

As requested, there is no intercept term. The vector 124 belongs to the 6-
dimensional subspace spanned by the dummy variables for npk$block. Again
there is no estimate for the N:P:K term. To see why, look at the model ma-
trix (with some names abbreviated) and some of the inner products between
columns:

## B1 B2 B3 B4 B5 B6 N1 P1 K1 N1:P1 N1:K1 P1:K1 N1:P1:K1

## 1 1 0 0 0 0 0 -1 1 1 -1 -1 1 -1

## 2 1 0 0 0 0 0 1 1 -1 1 -1 -1 -1

## 3 1 0 0 0 0 0 -1 -1 -1 1 1 1 -1

## 4 1 0 0 0 0 0 1 -1 1 -1 1 -1 -1

## 5 0 1 0 0 0 0 1 -1 -1 -1 -1 1 1

## 6 0 1 0 0 0 0 1 1 1 1 1 1 1

## N1 P1 K1 N1:P1 N1:K1 P1:K1 N1:P1:K1

## B1 0 0 0 0 0 0 -4

## B2 0 0 0 0 0 0 4

## B3 0 0 0 0 0 0 4

## B4 0 0 0 0 0 0 4

## B5 0 0 0 0 0 0 -4

## B6 0 0 0 0 0 0 -4

The N1:P1:K1 column gives the clue. Each element of that column is
a ±1. To get 〈Bi, N1 : P1 : K1〉 = ±4 the ± signs for N1:P1:K1 must be
the same within each block. Put another way

N1 : P1 : K1 = −B1 +B2 +B3 +B4 −B5 −B6.

The three-way interaction is confounded with the blocks. R silently discards
it from the basis when calculating the least squares fit.

Look up the entries under “confounding” in the BHH book.
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4 Block what you can and randomize what you cannot

I do not know who first used the title of this Section to summarize one
of the key ideas in Experimental Design. (I got it from Box et al., 1978,
Section 4.3.)

To illustrate the ideas let me consider a simple example where a treat-
ment, represented by a factor F on t levels, is applied to each of n = tk
experimental units (plots), with each level being applied k times. Suppose
the responses yα for α = 1, 2, . . . , n are independent across plots (conditional
on the choice of treatment levels for the plots) and

yα ∼ N(dα + τj , σ
2) if F[α] = j.

Think of the dα as a largely unknown contribution coming from the plot
itself, regardless of which level of treatment is applied. If we write d for the
column vector [d1, . . . , dn] and F1, . . . , Ft for the treament dummy vectors,
the model becomes

<8.1> y = d+
∑t

i=1
τiFi + ξ with ξ ∼ N(0, σ2In).

Suppose we are interested in estimating differences τj − τ`.
If the treatments were applied in some deterministic fashion, F (and

each Fj) would be fixed. The vector d would then represent an unknown
bias, which would complicate estimation of the treatment effects. If we
randomize the allocation of treatments then F becomes a random vector,
independent of ξ. When we take expectations over both the randomness
in ξ and the randomness artificially created for F, we can hope to remove
some of the bad effects of the unknown biases.

I’ll compare two ways of assigning treatments to plots:

(i) a completely randomized design (CRD), where the set of plots is
partitioned at random into k subsets of size t, with equal probability
for each partition

(ii) a randomized block design (RBD), where the partition into k blocks,
each of size t, is made with some rough idea of how the unknown dα’s
are varying. We hope to reduce the variability within each block, as
in the Eden-Fisher example. Within each block the levels are assigned
at random, each level exactly once.

For both designs R would estimate the difference τj − τ` by taking the
difference between the average response for plots that receive treatments j
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and plots that received treatment `,

∆̂j,` =
1

k

∑
α
1{F[α] = j}yα −

1

k

∑
α
1{F[α] = `}yα =

1

k
〈y, Fj − F`〉.

In both cases there is a symmetry between the treatments,

<8.2> P{F[α] = i} = 1/t for each α = 1, . . . , n and each i = 1, . . . , t.

The difference between the designs only shows up in the calculations of
variances and covariances.

4.1 Expected values

As there is so much symmetry it suffices to consider just one pair of levels,
say

∆̂ = 〈y, F1 − F2〉/k =
(
〈d+ ξ, F1 − F2〉+

∑t

i=1
τi〈Fi, F1 − F2〉

)
/k

= 〈d+ ξ, F1 − F2〉/k + τ1 − τ2.
For the last line I have used facts like 〈Fi, F1〉 = k if i = 1 and 0 if i 6= 1.
Even though the Fi’s are random, their inner products are non-random, by
design.

Remember that the expected value is taken over the independent random
quantities ξ and F; and by <8.2>, EFi[α] = 1/t for each α and i, that is,
EFi = t−1

1n for each i. Thus

E∆̂ = 〈d+ Eξ,E(F1 − F2)〉/k + τ1 − τ2 = τ1 − τ2.
In effect, the randomization has converted a systematic bias d into a new
random error 〈d, F1−F2〉 with zero expected value, which combines with ξ.
The extra randomness will show up in the variances and covariances.

4.2 Variances and covariances

The difference τj − τ` has no effect on the variance of ∆̂. Indeed

k2var(∆̂)

= var (〈d+ ξ, F1 − F2〉) = E
(
〈d+ ξ, F1 − F2〉2

)
− 02

= E
(∑

α
(dα + ξα)(F1[α]− F2[α])

)2
=
∑
α

E(dα + ξα)2E(F1[α]− F2[α])2

+ 2
∑
α<β

E(dα + ξα)(dβ + ξβ)E(F1[α]− F2[α])(F1[β]− F2[β])<8.3>
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Remark. Things would have looked simpler if I had used matrix
notation and the trace trick.

The random variables Fi[α] and Fi[β] take values in {0, 1}. And by symme-
try, P{F[α] = i,F[β] = j} = P{F[α] = j,F[β] = i} for each pair of distinct α
and β. The terms involving F1 − F2 simplify.

E(F1[α]− F2[α])2 = P{F[α] = 1 or 2 } = 2/t
1
2E(F1[α]− F2[α])(F1[β]− F2[β]) = ψ(α, β)

:= P{F[α] = 1,F[β] = 1} − P{F[α] = 1,F[β] = 2} for α 6= β.

Equality <8.3> reduces to

k2var(∆̂) =
∑

α
(d2α + σ2)(2/t)− 4

∑
α<β

dαdβψ(α, β).

= 2kσ2 +
2 ‖d‖2

t
− 4

∑
α<β

dαdβψ(α, β).<8.4>

The CAR and RBD cases differ only in the ψ(α, β) contributions.
For Homework 8 you will calculate simpler expressions for var(∆̂) for

both the CAR and RBD cases. You will see that we get a reduction in the
variance if we can choose the blocks so that most of the variability in dα−d is
accounted for by the variability in the block means di, with a small variation
within the blocks.
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