
The lasso

The following explanations are based mainly on ideas drawn from the papers
of Efron et al. (2004) and Tibshirani (2013). The analysis simplifies the
explanations in DPlasso2010.pdf, my first attempt at understanding the
LARS algorithm.

1 Least squares and lasso

In the classical least squares problem one starts from an n× 1 vector y and
an n× p matrix X = (x1, . . . , xp). The task is:

<1> find b̂ ∈ Rp to minimize Q(b) := ‖y −Xb‖22.

If X has rank p there exists a unique minimizing b̂, which can also be
characterized by the equalities

xTj (y −Xb̂) = 0 for j = 1, . . . , p.

If rank(X) < p there are many solutions b̂, but they all make Xb̂ equal to ŷ,
the orthogonal projection of y onto span(X).

Tibshirani (1996) proposed a modification, by constraining the minimiz-
ing b to lie in a convex set Kr = {b ∈ Rp : ‖b‖1 ≤ r}. The task became:

<2> find b̂ ∈ Kr to minimize Q(b) over Kr

(Osborne et al., 2000) recast the problem in dual form. The task became:

<3> find b̂ ∈ Rp to minimize Gλ(b) := 1
2Q(b) + λ‖b‖1.

The tuning parameters r and λ play parallel roles.
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The LARS algorithm provides a continuous, piecewise linear set of esti-
mates {b̂(λ) : 0 < λ < ∞} for which b̂(λ) minimizes Gλ, for each λ. That
is,

<4> Gλ(̂b(λ)) = m(λ) := min
b∈Rp

Gλ(b).

In general the b̂(λ)’s are not uniquely determined. However, as the next
lemma shows, the corresponding fitted vectors ŷ(λ) = Xb̂(λ) are unique.

<5> Lemma. For a given λ > 0 suppose both â and ĉ minimize Gλ. Then
Xâ = Xĉ and ‖â‖1 = ‖ĉ‖1.

Proof Define b̂ = (â + ĉ)/2. Define f(z) = 1
2‖y − z‖

2
2, a strictly convex

function of z. By convexity of f and ‖·‖1,

Gλ(̂b) = f(Xb̂) + λ‖b̂‖1 = f
(
1
2Xâ+ 1

2Xĉ
)

+ λ‖12 â+ 1
2 ĉ‖

≤ 1
2f(Xâ) + 1

2f(Xĉ) + λ
(
1
2‖â‖1 + 1

2‖ĉ‖1
)

= 1
2Gλ(â) + 1

2Gλ(ĉ) = m(λ).

The inequality would be strict if Xâ were not equal to Xĉ, which would lead
to the contradiction that Gλ(̂b) is strictly smaller than the minimum of Gλ.

The equalities Gλ(â) = m(λ) = Gλ(ĉ) and ‖y−Xâ‖22 = ‖y−Xĉ‖22 then
imply λ‖â‖1 = λ‖ĉ‖1.

�

The Lemma shows that we may define quantities

ŷ(λ) = Xb̂ and R(λ) = y − ŷ(λ)

q(λ) = 1
2‖R(λ)‖22 and `(λ) = ‖b̂‖1

by choosing b̂ as any minimizer of Gλ. From Homework 9, both q(λ)
and m(λ) = q(λ)+`(λ) are increasing functions of λ and `(λ) is a decreasing
function.

There is another way to think about b̂(λ) for λ > 0. By definition,

<6> 1
2Q(̂b(λ)) + λ‖b̂(λ)‖1 ≤ 1

2Q(b) + λ‖b‖1 for all b in Rp.

If b is a vector with Xb = ŷ(λ) then

<7> Q(̂b(λ)) = ‖R(λ)‖22 = Q(b).
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Subtraction followed by cancellation of a λ factor give ‖b̂(λ)‖1 ≤ ‖b‖1. In
other words,

b̂(λ) minimizes ‖b‖1 over {b ∈ Rp : Xb = ŷ(λ)}.

Even though this fact is not immediately useful it does give some insight
into the behavior of b̂(λ) as λ decreases to zero.

Piecewise linearity of λ 7→ b̂(λ) ensures that b∗ := limλ→0 b̂(λ) is a well
defined vector in Rp. By continuity and the fact that λ 7→ q(λ) is increasing
we must have Q(̂b(λ)) ↓ Q(b∗). We also have

1
2Q(b∗) = lim

λ→0

(
1
2Q(̂b(λ)) + λ‖b̂(λ)‖1

)
≤ lim

λ→0

(
1
2Q(b) + λ‖b‖1

)
= 1

2Q(b) for every b ∈ Rp.

The vector b∗ minimizes Q(b) = ‖y − Xb‖22 over Rp. It solves the least
squares problem <1>. Moreover, for every other least squares solution â,

1
2Q(b∗) + λ‖b̂(λ)‖1 ≤ 1

2Q(̂b(λ)) + λ‖b̂(λ)‖1 ≤ 1
2Q(â) + λ‖â‖1.

From the equality Q(b∗) = Q(â) we deduce that ‖b̂(λ)‖1 ≤ ‖â‖1. In the
limit as λ tends to zero we must have ‖b∗‖1 ≤ ‖â‖1. That is, the limit of
the LARS b̂(λ)’s as λ tends to zero gives the least squares solution with the
smallest `1 norm.

2 Minimization of convex functions

Suppose G is a convex function (such as the Gλ from <8>) defined on Rp,
for which G(p) → ∞ as ‖b‖2 → ∞. Such a G must achieve its minimum,
possibly at more than one point—the minimizer need not be unique.

Remark. The convex function g(t) = e−t on the real line does not
achieve its minimum. It gets arbitrarily close to zero but g(t) 6= 0 for
all t ∈ R. The assumption that G(p) → ∞ as ‖b‖2 → ∞ prevents
analogous behavior in higher dimensions.

For each b and u in Rp, the directional derivative

DG(b, u) = lim
t↓0

G(b+ tu)−G(b)

t

is well defined. A point b minimizes G if and only if

DG(b, u) ≥ 0 for all u ∈ Rp.
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<8> Example. The penalized form of the lasso minimizes the convex function

Gλ(b) = 1
2‖y −Xb‖

2
2 + λ‖b‖1.

Abbreviate DGλ to Dλ. Then, as you showed on Homework 9,

Dλ(b, u) =
∑

j∈[p]
uj

(
λR(̂bj)1{uj > 0}+ λL(̂bj)1{uj < 0} − xTj (y −Xb̂)

)
where

R(t) = 1{t ≥ 0} − 1{t < 0} = sgn(t) + 1{t = 0}
L(t) = 1{t > 0} − 1{t ≤ 0} = sgn(t)− 1{t = 0}.

It follows that Dλ(̂b, u) ≥ 0 for all u if and only if

xTj (y −Xb̂) = λ for all j where b̂j > 0

xTj (y −Xb̂) = −λ for all j where b̂j < 0

|xTj (y −Xb̂)| ≤ λ for all j where b̂j = 0.

These inequalities are usually called the KKT conditions.
Temporarily write Cj (̂b, λ) for xTj (y − Xb̂) and sj (̂b, λ) for Cj (̂b, λ)/λ.

The KKT conditions then become: b̂ minimizes Gλ if and only if

|sj (̂b, λ)| ≤ 1 for all j<9>

sj (̂b, λ) = +1 if b̂j > 0<10>

sj (̂b, λ) = −1 if b̂j < 0<11>

It is often easy to check the KKT conditions for an explicitly specified b̂.
It takes more effort to find the candidate b̂ in the first place. The LARS
algorithm constructs b̂(λ) by extending from a trivial case (very large λ,
which forces b̂ to be zero) to smaller values of λ. As you will soon see, the
KKT conditions themselves suggest the way in which b̂(λ − t) should be
related to b̂(λ). �

The LARS algorithm starts with large λ. More precisely, we first consider

λ ≥ L1 := maxj∈[p] |xTj y|.

Try b̂ = 0. The KKT conditions reduce to

|xTj y| ≤ λ for all j,

which clearly holds for λ ≥ L1.
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Remark. How would you prove that b̂ = 0 is the only solution for this
range of λ? Hint: Why must we have ŷ(λ) = 0?

Just as clearly, the candidate b̂ = 0 fails the KKT requirement if λ < L1.
We need to move b̂(L1 − t) away from zero if t > 0.
For the diabetes data L1 ≈ 949.4 = xTbmiy. For all the other predictors

|xTj y| < L1. At least for small t we need only modify the bmi coefficient to
maintain the KKT constraints. Consider

b̂bmi(L1 − t) = t and b̂j(L1 − t) = 0 for j 6= bmi.

That gives

Xb̂(L1 − t) = xbmib̂bmi(L1 − t) = txbmi

and R(L1 − t) = y −Xb̂(L1 − t) = y − txbmi. For this choice

xTbmiR(L1 − t) = xTbmiy − t = L1 − t.

The KKT constraint for j = bmi is still satisfied. For j 6= bmi,

xTj R(L1 − t) = xTj y − xTj xbmit.

For small enough positive t all the KKT constraints are still satisfied.
The Cj(L1 − t)’s for the other predictors also change with t. Eventually

maxj 6=bmi |sj (̂b(L1 − t)| = 1, which forces a recalculation of b̂.

3 The equicorrelation set

Suppose we have a b̂(λ0) that minimizes Gλ, for some specified λ0. Tibshi-
rani (2013, page 1464) called

E(λ0) := {j : |xTj R(λ0)| = λ0}

the equicorrelation set (at parameter λ0).

Remark. Notice that E(λ0) depends on b̂(λ0) only through the
vector R(λ0) of residuals.

For the moment let me abbreviate E(λ0) to E when subscripts start
getting too messy. The vector

sE(λ0) := (sj (̂b(λ0), λ0) : j ∈ E(λ0))

Draft: 13 Nov 2016 c©David Pollard 5



Stat 312/612

contains only values ±1. For j in Ec(λ0) the KKT constraint forces b̂j(λ0) =

0, so that R(λ0) = y −XEb̂E and

<12> XT
E R(λ0) = λ0sE.

For j ∈ Ec we must have |xTj R(λ0)| < λ0.
Now suppose we have another value of λ, say λ1 > λ0, with the same

equicorrelation set and the same sE:

E(λ0) = E(λ1) = E and sE(λ0) = sE(λ1) = sE.

For 0 < θ < 1 define λθ := (1− θ)λ0 + θλ1 and â(θ) := (1− θ)̂b(λ0) + θb̂(λ1).
Notice that

XT
E (y −XEâ(θ)) = XT

E

(
(1− θ)(y −XEb̂(λ0)) + θ(y −XEb̂(λ1))

)
= (1− θ)XT

E (y −XEb̂(λ0)) + θXT
E (y −XEb̂(λ1))

= λθsE

and, for j ∈ Ec,

|xTj (y −Xâ(θ))| = |(1− θ)xTj (y −XEb̂(λ0)) + θxTj (y −XEb̂(λ0))

< λθsE.

Thus:

(i) The vector â(θ) satisfies the KKT conditions at λθ.

(ii) The vector â(θ) must minimize Gλθ .

(iii) The residual vector R(λθ) must equal y −XEâ(θ).

(iv) The equicorrelation set E(λθ) must equal E and the vector sE(λθ) must
equal sE.

These four conclusions tell us a lot about the LARS solution path. The
set (0,∞) must be partitioned into finitely many intervals on each of which
the equicorrelation set E(λ) and the vector sE(λ) stay constant. Moreover,
once the solution path changes the E(λ) or the sE(λ) it can never return to
the same set of values. Even better, we can take b̂(λ) to be linear on each
of the intervals.

It now just a matter of finding those intervals and determining how b̂(λ)
behaves on each of them.
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4 The LARS solution path for the diabetes data

At the end of Section 2 we left LARS as it started to explore values of λ
smaller than L1 ≈ 949.4. The coefficient b̂bmi was happy to be increasing
linearly; the other coefficients were staying zero. The Cbmi(̂b(λ), λ) was
cruising down the upper boundary of the constraint set. The first disruption
occures at λ = L2 ≈ 889.3, where Cltg (̂b(λ), λ) hits the upper boundary,
adding a second predictor to the equicorrelation set.

949.4889.3452.9316.1

0

-949.4

949.4

Cj's

age, tc, ldl

sex

bmi, ltg

map, tch, glu

hdl

0

434.8
bj's

age, sex, tc, ldl, hdl, tch, glu

bmi

map

ltg

Modified lasso algorithm for diabetes data

By an as-yet unexplained method, the coefficients b̂bmi and b̂ltg then
switch to different linear regime, while the other coefficients stay at zero.
At λ = L3 ≈ 452.9 the map predictor joins the equicorrelation set.

Modification of the linear regime is also needed when one of the coeffi-
cients for the equicorrelation set hits zero. I’ll skip over this aspect of the
LARS algorithm and instead focus on what happens when a new variable
joins E(λ), say at λ = λ1. Abbreviate E(λ1) to E and sE(λ1) to sE. We know
that

XT
E R(λ1)/λ1 = XT

E (y −XEb̂E)/λ1 = sE.

From HW9.1, there exists a vector W for which

XT
EXEW = sE.

In fact every XE has full rank for the diabetes example, so the W can be
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written as

W = (XT
EXE)−1XTER(λ1)/λ1.

Consider the effect of taking

b̂E(λ1 − t) = b̂E(λ1) + tW for t > 0,

with the other b̂j ’s left at zero.

XT
E (y −XEb̂E(λ1 − t)) = XT

E (y −XEb̂E(λ1))−XT
EXE(tW )

= λ1sE − tsE = (λ1 − t)sE.

Voila!
The new Cj ’s for j ∈ E are now heading along the appropriate ±λ

boundaries. The KKT conditions are again satisfied until a new predictor
wants to enter the equicorrelation set and we have extended b̂(λ) to some
interval [λ0, λ1].

And so on.
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