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1 Matrix notation

Suppose W is an m × k matrix whose elements are random variables. The
expected value of W , written EW , is the m×k matrix whose (i, j)th element
equals EWi,j .

You should convince yourself that, if A is an `×m matrix of constants
and B is an `× k matrix of constants then

E(AW +B) = AE(W ) +B.

Covariances
If W is an m × 1 vector of random variables with EW = µw and Z is an
`× 1 vector of random variables with EZ = µz then cov(W,Z) is defined to
be the m× ` matrix with (i, j)th element

cov(Wi, Zj) = E ((Wi − EWi)(Zj − EZj)) = E(WiZj)− (EWi)(EZj).

In matrix form,

cov(W,Z) = E
(
(W − µw)(Z − µz)T

)
= E(WZT )− µwµTz .
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If A and B are matrices of constants for which AW and BZ are well defined
then

cov(AW,BZ) = Acov(W,Z)BT .

You should convince yourself of this fact.
For the special case where W = Z the matrix cov(W,W ) is usually

denoted by var(W ), so that

var(W )i,j =

{
var(Wi) if i = j
cov(Wi,Wj) if i 6= j

.

The trace trick
The trace of a square matrix D is defined to be the sum of its diagonal
elements, trace(D) =

∑
iDi,i. If F in an m × k matrix and G is a k ×m

matrix then

trace(FG) = trace(GF )

because both sides equal
∑

i,j Fi,jGj,i.

<3.1> Example. Suppose y is an n × 1 vector of random variables with Ey = µ
and var(y) = V . Then

E
(
‖y − µ‖2

)
= E

(∑
i
(yi − µi)2)

)
=
∑

i
var(yi) = trace(V ).

More directly, we could use the fact that

‖y − µ‖2 = trace
(
(y − µ)T (y − µ)

)
= trace

(
(y − µ)(y − µ)T

)
so that

E ‖y − µ‖2 = Etrace
(
(y − µ)(y − µ)T

)
= trace E

(
(y − µ)(y − µ)T

)
= trace(V ).

Here I have used the fact that a number t is the same as the trace of the 1×1
matrix whose only element is t, and the fact that the expected value of a
sum is the sum of the expected values.

�
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2 The model

Up until now, I have treated least squares as just a method to approximate
an n × 1 vector y by a linear combination of the columns of some n × p
matrix X. More succinctly, the problem has been to approximate y by a
vector in the subspace X of Rn that is spanned by the columns of X. The
best approximation can be written as ŷ = Hy, where H is the “hat matrix”,
the matrix that projects vectors orthogonally onto X.

Statistician also regard least squares as a method for estimating a “sig-
nal”, an unknown vector µ that is assumed to belong to the subspace X,
when we observe “signal + noise”,

y = µ+ ξ with µ ∈ X.

The simplest model assumes that the noise has zero means (Eξi = 0 for all i),
constant variances (var(ξi) = σ2 for some unknown σ2) and is uncorrelated
(cov(ξi, ξj) = 0 for i 6= j).

If the matrix X is also regarded as random then the expected values,
variances, and covariances should all be interpreted as conditional on X:

E(ξi | X) = 0 and cov(ξ, ξj | X) =

{
σ2 if i = j
0 if i 6= j

The calculations of expected values and covariances for fitted values and
residuals are much cleaner when expressed in matrix form:

Eξ = 0 and var(ξ) = σ2In,

so that

Ey = µ and var(y) = σ2In.

It is easy to calculated and covariances for the fitted vector ŷ and the residual
vector. First note that ŷ = µ + Hξ because Hµ = µ. Similarly r =
(In −H)y = (In −H)ξ. Notice that, assuming the model is correct (better:
under the modeling assumptions),

Eŷ = µ+HE(ξ) = µ

Er = (In −H)E(ξ) = 0

var(y) = Hvar(ξ)HT = σ2H

var(r) = (In −H)var(ξ)(In −HT ) = σ2(In −H)

cov(ŷ, r) = cov(Hξ, (In −H)ξ) = Hvar(ξ)(I −Hn)T = 0.

Here I have several times used the fact that H = HT = H2.
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Remark. You should not confuse the probabilistic fact that (under the
model) cov(ŷ, r) = 0 with the geometric fact that 〈ŷ, r〉 = 0. The first
is an assertion about the expected value of a particular n× n matrix;
the second is a fact about a 1× 1 matrix.

<3.2> Example. (coordinate-free version of Gauss-Markov) Suppose we are inter-
ested in estimators for some linear function cTµ of the theoretical expected
values. (That is, c is a vector of constants.) Suppose also that we are only
interested in estimators that are linear functions of y and are unbiased as
estimators of cTµ, that is,

Eµ(`T y) = cTµ for all µ ∈ X.

The subscript µ on the E is to remind you that the unbiasedness is a property
that should hold for all possible choices of µ in X.

Problem: Which choice of ` makes

var(`T y) = `Tvar(y)` = σ2 ‖`‖2

the smallest?
Unbiasedness requires that

E(`T y) = `Tµ = cTµ for all µ in X.

That is, we require that (`−c)Tµ = 0 for all µ in X, which means that (`−c)
must be orthogonal to X. In other words, ` = c+ L where L is some vector
in X⊥. Equivalently

` = Hc+ (L+ (In −H)c),

a sum of a vector, Hc, in X and a vector orthogonal to X. The last repre-
sentation gives

‖`‖2 = ‖Hc‖2 + ‖L+ (In −H)c‖2

The right-hand side takes its smallest value when the X⊥ vector L is chosen
to make L+ (In−H)c = 0. That is, the minimum is achieved when ` = Hc,
so that `T y = cT ŷ.

�

Remark. The fact that cT ŷ is the linear function of y that has the
smallest variance amongst all unbiased linear estimators of cTµ is not
particularly surprising, in my opinion. It also ignores two legitimate
questions: Why should we consider only linear functions of y? And
why should we require unbiasedness? Modern statistical theorists are
quick to abandon those requirements for more complicated models.
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3 Parameters (full rank case)

Suppose X has rank p with singular value decomposition

X =
∑

i≤p
λiuiv

T
i = U1Λ1V

T
1

for which λi > 0 for all i ≤ p. Here U1 is an n × p matrix whose columns
provide an orthonormal basis (onb) for X, and Λ1 = diag(λ1, . . . , λp), and
V is a p× p matrix whose columns provide an onb for Rp.

Recall that H = U1U
T
1 is then the hat matrix and

b̂ = V Λ−11 UT1 y

is the unique solution to the equation Xb = ŷ. Similarly, the expected
value µ = Ey has a unique representation as Xβ, where

β = V Λ−1UT1 µ.

It is then natural to treat b̂ as an estimator for β. It might be comforting
to note that

Eb̂ = V Λ−11 UT1 Ey = V Λ−11 UT1 µ = β

and

var(̂b) = V Λ−11 UT1 var(y)(V Λ−11 UT1 )T = σ2V Λ−21 V T =
∑

i≤p

σ2

λ2i
viv

T
i .

You could use this representation on Homework 3 to find the unit vectors q
in Rp for which var(qT b̂) is the largest or smallest.

If you are no longer interested in minimum variance unbiased estimators
then you could skip the next example.

<3.3> Example. (Gauss-Markov with coordinates) Find the ` for which `T y has
the smallest variance amongst all unbiased estimators of dTβ, where d is a
specified constant vector in Rp.

This problem is really just a disguised form of Example <3.2> with c =
U1Λ

−1
1 V Td, the choice for which cTµ = dTβ. We already know that the

solution is

` = Hc = U1U
T
1 U1Λ

−1
1 V Td = U1U1Λ

−1
1 V Td

so that

`T y = dTV Λ−11 UT1 y = dT b̂.

Surprise!
�
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4 Traditional treatment of parameters (full rank case)

Just in case you were wondering, here is the way some of the results in the
previous section are usually derived when X has full rank.

The value b̂ is the unique b for which y−Xb is orthogonal to the columns
of X. That is, it is the solution to the “normal equations”,

XT (y −Xb) = 0.

The p× p matrix XTX = V Λ2
1V

T has rank p (Why?), which means that it
has an inverse and

b̂ = (XTX)−1XT y.

Compare with the svd representation:

(XTX)−1XT = (V Λ2
1V

T )−1(V Λ1U
T
1 ) = V Λ−1UT .

Thus

Eb̂ = (XTX)−1XTEy = (XTX)−1XTXβ = β

and

var(̂b) = (XTX)−1XTvar(y)X(XTX)−1 = σ2(XTX)−1 = σ2V Λ−21 V T .

I think the final representation is more informative because it shows where
problems can occur when X is ill-conditioned.

The fitted vector equals

Xb̂ = X(XTX)−1XT y,

which agrees with ŷ = Hy because

X(XTX)−1XT = U1Λ1V
TV Λ−21 V T (V Λ1U

T
1 ) = U1U

T
1 = H.

5 Rank < p

Things get much more complicated (and interesting) when the matrix X is
not of full rank. See the handout overparametrized.pdf for details.
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