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Matrix notation

Suppose W is an m X k matrix whose elements are random variables. The
expected value of W, written EW, is the m X k matrix whose (i, j)th element
equals EW; ;.

You should convince yourself that, if A is an £ x m matrix of constants
and B is an ¢ x k matrix of constants then

E(AW + B) = AE(W) + B.

Covariances

If W is an m x 1 vector of random variables with EW = u,, and Z is an
¢ x 1 vector of random variables with EZ = p, then cov(W, Z) is defined to
be the m x ¢ matrix with (4, j)th element

cov(Wi, Zj) = E((W; — EW:)(Z; — EZj)) = E(W:Z;) — (EW;)(EZ;).
In matrix form,

cov(W, Z) =E (W — p)(Z = piz)") = BWZ") = pps?
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If A and B are matrices of constants for which AW and BZ are well defined
then

cov(AW, BZ) = Acov(W, Z)B”.

You should convince yourself of this fact.
For the special case where W = Z the matrix cov(W, W) is usually
denoted by var(W), so that

- var(W;) ifi=j
var(W)i; = {COV(VVZ', W;) ifi#j "

The trace trick

The trace of a square matrix D is defined to be the sum of its diagonal
elements, trace(D) = >, D;;. If Fin an m x k matrix and G is a k x m
matrix then

trace(F'G) = trace(GF)
because both sides equal Zw F; ;Gji.

Example. Suppose y is an n X 1 vector of random variables with Ey =
and var(y) = V. Then

E(ly—pl?) =E (3 (5 — ni)?)) = 3 var(y:) = trace(V).
More directly, we could use the fact that
ly — pl* = trace ((y — )" (y — ) = trace ((y — p)(y — 1))
so that
E|ly — ul|* = Etrace ((y — )y — p)") = trace E ((y — p)(y — p)") = trace(V).

Here I have used the fact that a number ¢ is the same as the trace of the 1 x1
matrix whose only element is ¢, and the fact that the expected value of a
sum is the sum of the expected values.
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The model

Up until now, I have treated least squares as just a method to approximate
an n X 1 vector y by a linear combination of the columns of some n x p
matrix X. More succinctly, the problem has been to approximate y by a
vector in the subspace X of R™ that is spanned by the columns of X. The
best approximation can be written as ¥ = Hy, where H is the “hat matrix”,
the matrix that projects vectors orthogonally onto X.

Statistician also regard least squares as a method for estimating a “sig-
nal”, an unknown vector p that is assumed to belong to the subspace X,
when we observe “signal + noise”,

y=pn+¢§ with p € X.

The simplest model assumes that the noise has zero means (E§; = 0 for all 7),
constant variances (var(¢;) = o2 for some unknown o) and is uncorrelated

(cov(&,&5) = 0 for i # j).

If the matrix X is also regarded as random then the expected values,
variances, and covariances should all be interpreted as conditional on X:
o ifi=j
0 ifi#y

The calculations of expected values and covariances for fitted values and
residuals are much cleaner when expressed in matrix form:

EE=0 AND var(€) =021,

E | X)=0 aAND cov( & | X) = {

so that
Ey=pu AND var(y) = o°1,.

It is easy to calculated and covariances for the fitted vector 3y and the residual
vector. First note that ¥y = pu + HE because Hy = p. Similarly r» =
(I, — H)y = (I, — H)&. Notice that, assuming the model is correct (better:
under the modeling assumptions),
Ej = p+ HE(E) = p
Er=(I,— HE(E) =0
var(y) = Hvar(§)HT = o?H
var(r) = (I, — H)var(¢)(I, — H') = o*(I,, — H)
cov(y,r) = cov(HE, (I,, — H)€) = Hvar(¢)(I — H,)T = 0.
Here I have several times used the fact that H = H” = H?.

Draft: 18 Sept 2016 © David Pollard 3




<3.2>

Stat 312/612

Remark. You should not confuse the probabilistic fact that (under the
model) cov(y,r) = 0 with the geometric fact that (y,r) = 0. The first
is an assertion about the expected value of a particular n X n matrix;
the second is a fact about a 1 x 1 matrix.

Example. (coordinate-free version of Gauss-Markov) Suppose we are inter-
ested in estimators for some linear function ¢’ 11 of the theoretical expected
values. (That is, ¢ is a vector of constants.) Suppose also that we are only
interested in estimators that are linear functions of y and are unbiased as
estimators of ¢! 11, that is,

E.((Ty)=c"p for all p € X.

The subscript 4 on the E is to remind you that the unbiasedness is a property
that should hold for all possible choices of p in X.
Problem: Which choice of ¢ makes

var((Ty) = (Tvar(y)l = o ||¢|?

the smallest?
Unbiasedness requires that

E(Ty) =Tp=cp for all x4 in X.

That is, we require that (£ —¢)T = 0 for all y in X, which means that (£—c)
must be orthogonal to X. In other words, { = ¢+ L where L is some vector
in X*. Equivalently

(= He+ (L+ (I, — H)e),

a sum of a vector, He, in X and a vector orthogonal to X. The last repre-
sentation gives

Il = | He|” + |[L + (In — H)e|”

The right-hand side takes its smallest value when the X vector L is chosen
to make L+ (I,, — H)c = 0. That is, the minimum is achieved when ¢ = He,
so that Ty = 'y,

Remark. The fact that ¢7§ is the linear function of y that has the
smallest variance amongst all unbiased linear estimators of ¢’ is not
particularly surprising, in my opinion. It also ignores two legitimate
questions: Why should we consider only linear functions of y? And
why should we require unbiasedness? Modern statistical theorists are
quick to abandon those requirements for more complicated models.
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Parameters (full rank case)

Suppose X has rank p with singular value decomposition
T T
X = Zigp /\iuivi = UlAl‘/l

for which A\; > 0 for all ¢ < p. Here U; is an n X p matrix whose columns
provide an orthonormal basis (onb) for X, and A; = diag(A1,...,Ap), and
V is a p X p matrix whose columns provide an onb for RP.

Recall that H = U U{ is then the hat matrix and

b= VAU
is the unique solution to the equation Xb = 7. Similarly, the expected
value u = Ey has a unique representation as X3, where

B=VAUL .
It is then natural to treat b as an estimator for B. Tt might be comforting
to note that

Eb=VAT'U{ By = VAT UL = 8

and
™ —17/T —177T\T 217 A—21/7T o’
var(b) = VAT U; var(y) (VAT U )" =0 VATV = Zigp /\—?vivi .
You could use this representation on Homework 3 to find the unit vectors ¢
in R? for which var(qT/I;) is the largest or smallest.
If you are no longer interested in minimum variance unbiased estimators
then you could skip the next example.

Example. (Gauss-Markov with coordinates) Find the ¢ for which ¢Ty has
the smallest variance amongst all unbiased estimators of d’ 3, where d is a
specified constant vector in RP.

This problem is really just a disguised form of Example <3.2> with ¢ =
UlAl_lde, the choice for which ¢’y = d¥B. We already know that the
solution is

(= He=UU{U A 'VId =000V d
so that
Ty =d"VAT'UTy = d"b.

Surprise!
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Traditional treatment of parameters (full rank case)

Just in case you were wondering, here is the way some of the results in the
previous section are usually derived when X has full rank.

The value b is the unique b for which y — Xb is orthogonal to the columns
of X. That is, it is the solution to the “normal equations”,

XT(y— Xb)=0.

The p x p matrix X7 X = VA?VT has rank p (Why?), which means that it
has an inverse and

b= (XTX)"'xTy.
Compare with the svd representation:
XTxX)IXxT = (vAvh)y L (v UL = vAa~luT.
Thus
Eb=(X"X)'XTEy = (XT"X)"'XTXB =7
and
var(b) = (X7 X) "' X Tvar(y) X (XTX) ' = o2(XTX) ' = 2VA2VT.

I think the final representation is more informative because it shows where
problems can occur when X is ill-conditioned.
The fitted vector equals

Xb=X(XTX)"1xTy,
which agrees with ¥ = Hy because

X(XTx)" xT =, VIVAPVT (v UT) = U U] = H.

Rank < p

Things get much more complicated (and interesting) when the matrix X is
not of full rank. See the handout overparametrized.pdf for details.
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