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1 The multivariate normal and related distributions

Let Z1, Z2, . . . , Zn be independent N(0, 1) random variables. When treated
as the coordinates of a point in Rn they define a random vector Z, whose
(joint) density function is

f(z) = (2π)−n/2 exp
(
−1

2

∑
i
z2i

)
= (2π)−n/2 exp

(
−1

2 ‖z‖
2
)
.

Such a random vector is said to have a spherical normal distribution.
That is, Z ∼ N(0, In).

(i) The chi-square, χ2
n, is defined as the distribution of the sum of

squares Z2
1 + · · · + Z2

n of independent N(0, 1) random variables. The
noncentral chi-square, χ2

n(γ), with noncentrality parameter γ ≥ 0 is
defined as the distribution of the sum of squares (Z1+γ)2+Z2 · · ·+Z2

n.

(ii) If Z ∼ N(0, 1) is independent of S2
k ∼ χ2

k then

Z√
S2
k/k

has a t-distribution on k degrees of freedom (tk)
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(iii) If S2
k ∼ χ2

k is independent of S2
` ∼ χ2

` then

S2
` /`

S2
k/k

has an F -distribution on ` and k degrees of freedom (F`,k)

The t disributions are actually not much different from the normal if the
degrees of freedom and not too small.

xx <- seq(-6,6,by=0.01)

T1 <- dt(xx,1); T5 <- dt(xx,5); T10 <- dt(xx,10); T20 <- dt(xx,20); NN <- dnorm(xx)

plot(xx,NN,col="red",xlab="",ylab="density",type="l")

lines(xx,T20,col="blue"); lines(xx,T10,col="blue",lty=3)

lines(xx,T5,col="purple"); lines(xx,T1,col="purple",lty=3)

legend(2, 0.4, leg = c("normal",paste("t with ", c(1,5,10,20),"df")),lty=c(1,1,3,1,3),

col= c("red","blue","blue","purple","purple"),cex=1)
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As the degrees of freedom increase, the density at zero increases to the
value of the normal density at zero.
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2 Rotation of axes

The spherical symmetry of the density f(·) is responsible for an important
property of multivariate normals. Let q1, . . . ,qn be a new orthonormal basis
for Rn, and let

Z = W1q1 + · · ·+Wnqn

be the representation for Z in the new basis.

<6.1> Theorem. The W1, . . . ,Wn are also independent N(0, 1) distributed ran-
dom variables.

If you know about multivariate moment generating functions this is easy
to establish using the matrix representation Z = QW, where Q is the or-
thogonal matrix with columns q1, . . . ,qn.

z1

z2

w1

w2

    ball B (in Z-coordinates) =  ball B* (in W-coordinates)

A more intuitive explanation is based on the approximation

P{Z ∈ B} ≈ f(z)(volume of B)

for a small ball B centered at z. The transformation from Z to W corre-
sponds to a rotation, so

P{Z ∈ B} = P{W ∈ B∗},

where B∗ is a ball of the same radius, but centered at the point w =
(w1, . . . , wn) for which w1q1 + · · · + wnqn = z. The last equality implies
‖w‖ = ‖z‖, from which we get

P{W ∈ B∗} ≈ (2π)−n/2 exp(−1
2 ‖w‖

2)(volume of B∗).
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That is, W has the asserted spherical normal density.
To prove results about the spherical normal it is often merely a matter

of transforming to an appropriate orthonormal basis.

<6.2> Theorem. Let X be an m-dimensional subspace of Rn. Let Z be a vector of
independent N(0, 1) random variables, and µ be a vector of constants. Then

(i) the projection Ẑ of Z onto X is independent of the projection Z− Ẑ of
Z onto X⊥, the orthogonal complement of X.

(ii)
∥∥∥Ẑ∥∥∥2 has a χ2

m distribution.

(iii) ‖Z + µ‖2 has a noncentral χ2
n(γ) distribution, with γ = ‖µ‖.

(iv)
∥∥∥Ẑ + µ

∥∥∥2 has a noncentral χ2
m(γ) distribution, with γ = ‖µ‖.

Proof Let q1, . . .qn be an orthonormal basis of Rn such that q1, . . . ,qm
span the space X and qm+1, . . . ,qn span X⊥. If Z = W1q1 + · · · + Wnqn
then

Ẑ = W1q1 + · · ·+Wmqm,

Z− Ẑ = Wm+1qm+1 + · · ·+Wnqn,

‖Z‖2 = W 2
1 + · · ·+W 2

m,

from which the first two asserted properties follow.
For the third and fourth assertions, choose the basis so that µ = γq1.

Then

Z + µ = (W1 + γ)q1 +W2q2 + . . . +Wnqn

Ẑ + µ = (W1 + γ)q1 +W2q2 + · · ·+Wmqm

from which we get the noncentral chi-squares.
�

<6.3> Example. Suppose X1, . . . , Xn are independent random variables, each dis-
tributed N(µ, σ2). Define X = n−1

∑
i≤nXi and S2 =

∑
i≤n(Xi − X)2.

Many textbooks prove the following assertion in a gruesome way:

X ∼ N(µ, σ2/n) independent of S2/σ2 ∼ χ2
n−1.

The clean proof uses the fact that the random variables Zi = (Xi−µ)/σ
are independent N(0, 1)’s, so that Z = (Z1, . . . , Zn) ∼ N(0, In). Define
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q1 = 1/
√
n then find q2, . . . , qn so that {qi : 1 ≤ i ≤ n} is an onb for Rn.

(Actually it is not necessary to calculate q2, . . . , qn explicitly. It suffices to
know that such qi’s exist.)

From Theorem <6.1>, if

Z = W1q1 + · · ·+Wnqn

then the Wi’s are independent N(0, 1). In particular,

Z = 1
TZ/n = qT1 Z/

√
n = W1/

√
n ∼ N(0, 1/n)

so that

X = µ+ σZ ∼ N(µ, σ2/n).

Also Z− Z1 =
∑n

i=2Wiqi so that

S2 = σ2
∑

i≤n
(Zi − Z)2 = σ2

∑
2≤i≤n

W 2
i .

The independence comes from the fact that X is a function of W1 and S2

is a function of W2, . . . ,Wn. Notice also that

√
n(X − µ)√
S2/(n− 1)

=

√
nσZ

σ
√

(Zi − Z)2 /(n− 1)
=

W1√∑
i≥2W

2
i /(n− 1)

∼ tn−1.

The final assertion comes from the fact that W1 ∼ N(0, 1) independently of∑
i≥2W

2
i ∼ χ2

n−1.
Now suppose we were wondering if µ were really zero. If it were, then

Tobs =

√
nX√

S2/(n− 1)

would be distributed tn−1. We could then calculate a two-sided p-value,
pobs = tail(Tobs, n− 1) where

tail(x, n− 1)) = P{|T | ≥ x} for T ∼ tn−1.

If pobs is very small then we are faced with a choice between “µ = 0 and we
have just observed the occurrence of a rare event” or “|Tobs| is large, perhaps
because |µ| is a long way from zero.”

�
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3 Facts about the multivariate normal

Suppose Z ∼ N(0, In) and µ is an m × 1 vector of constants. If A is an
m×n matrix of constants then the random vector X = µ+AZ has expected
value µ with variance matrix V = AA′, and moment generating function

E exp(tTX) = exp(tTµ+ tTAAT t/2) = exp(tTµ+ tTV t/2).

The distribution of X depends only on µ and V . The random vector X has
a N(µ, V ) distribution.

If γ is a k × 1 vector of constants and B is a k ×m matrix of constants
then

γ +BX = (γ +Bµ) +BAZ ∼ N(γ +Bµ,BV B′).

4 Least squares

Much of the distribution theory for least squares has been worked out for
the simple model where y = µ + ξ ∼ N(µ, σ2In), where the unknown µ is
assumed to lie in some known p-dimensional subspace X of Rn and σ2 is
unknown.

Write ξ as σZ, where Z ∼ N(0, In). Let q1, . . . , qn be an onb for Rn such
that q1, . . . , qp are an onb for X and qp+1, . . . , qn are an onb for X⊥. Then
Z =

∑
i≤nWiqi with, by Theorem <6.1>, W ∼ N(0, In).

The matrix

H =
∑

i≤p
qiq

T
i

projects vectors orthogonally onto X. Thus

ŷ = H(µ+ σZ) = µ+ σHZ = µ+ σ
∑

i≤p
Wiqi

y − ŷ = σ
∑

i>p
Wi.

Independence of the Wi’s implies that ŷ and y − ŷ are independent, with

y ∼ N(µ, σ2H) and y − ŷ ∼ N(0, σ2(In −H)).

Under the model, the residual sum of squares equals

RSS = ‖y − ŷ‖2 = σ2
∑

i>p
W 2
i ,

which implies that RSS/σ2 ∼ χ2
n−p. The estimate of σ2 is σ̂2 = RSS/(n−p),

which is independent of ŷ.
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5 Some t-tests and p-values

Consider first the simplest case where X is an n × p matrix of rank p and
the θ model posits that y ∼ N(Xθ, σ2In). That is, Eθy = Xθ and y = Xθ+ξ
where ξ ∼ N(0, σ2In).

The matrix X has a qr-decomposition X = Q1R1 where Q1 is an n× p
matrix whose columns provide an onb for X and R1 is an p × p upper-
triangular matrix of rank p, that R1 has an p× p inverse S1.

The orthogonal projection of y onto X equals Hy, for hat matrix H =
Q1Q

T
1 . The least squares estimator θ̂ is defined by ŷ = Xθ̂. That is,

ŷ = Q1Q
T
1 y = Q1R1θ̂ and θ̂ = S1Q

T
1 ŷ = S1Q

T
1 y.

Under the model, θ̂ ∼ N(θ, σ2S1S
T
1 ). In particular, θ̂j ∼ N(θj , σ

2v2j ), where

v2j is the jth diagonal element of S1S
T
1 .

By the independence of ŷ and RSS, under the θ model

θ̂j − θj
vj σ̂

=

(
θ̂j − θj

)
/(v1σ)√

RSS/(n− p)σ2
∼ tn−p.

If θj = 0 then, under the model,

Tobs,j = θ̂j/(vj σ̂) ∼ tn−p.

We could then calculate a two-sided p-value, pobs,j = tail(Tobs,j , n−p) where

tail(x, n− p)) = P{|T | ≥ x} for T ∼ tn−p.

The interpretation parallels the interpretation in Example <6.3>. For ex-
ample, in the following summary table, each line gives the name correspond-
ing to θj , the estimate vj σ̂ for the square root of var(θ̂j), the ratio Tobs,j ,
and pobs,j . Formally the p-value corresponds to a test of the null hypothe-
sis θj = 0 under the θ model. If the model is badly wrong then the p-value
has little meaning.

cath <- read.table("catheter.txt",header=T)

outHW <- lm(distance ~ height + weight,cath)

look(outHW)

## lm(formula = distance ~ height + weight, data = cath)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 21.008 8.751 2.401 0.040

## height 0.196 0.361 0.545 0.599

## weight 0.191 0.165 1.155 0.278

Draft: 10 Oct 2016 c©David Pollard 7



Stat 312/612

As a check:

HWqr <- outHW$qr

R1 <- qr.R(HWqr); Q1 <- qr.Q(HWqr)

varhat <- sum(outHW$residuals^2)/outHW$df.residual

S1S1t <-chol2inv(R1) # fancy way to calculate (R1^T R1)^{-1}
std.err <- sqrt( varhat * diag(S1S1t) )

S1S1t <-chol2inv(R1)

tval <- outHW$coeff/std.err

pval <- 2*pt(tval,outHW$df,lower.tail=F)

round( cbind(outHW$coeff,std.err,tval,pval), 3)

## std.err tval pval

## (Intercept) 21.008 8.751 2.401 0.040

## height 0.196 0.361 0.545 0.599

## weight 0.191 0.165 1.155 0.278

Now for the harder case where the matrix X has rank m < p. For
example, for the Box-Cox data discussed in Contrasts.pdf, the conceptual
design matrix prescribed by lm( rate ~ Ht + Hp,BC) is a 48× 8 matrix

X = (148, F1, F2, F3, F4, G1, G2, G3)

where F = (F1, F2, F3, F4) is the matrix of summy variables for the factor
Ht and G = (G1, G2, G3) is the matrix of summy variables for the factor Hp

By means of the (Helmert) contrasts for the two factors Ht and Hp, R
replaces X by the 48× 6 matrix

X̃ = XM where M =

1 0 0
0 C4 0
0 0 C3

 ,

which has rank 6. The matrix X̃ has qr-decomposition Q1R1 where Q1 is a
48×6 matrix whose columns provide an onb for the 6-dimensional subspace X
for R48 spanned by the columns of X. The 6×6 upper triangular matrix R1

has inverse S1.

Xtilde <- model.matrix(outBC)

C3 <- contrasts(BC$Hp)

C4 <- contrasts(BC$Ht)

MM <-bdiag(1,C4,C3)

print(MM)
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## 8 x 6 sparse Matrix of class "dgCMatrix"

##

## [1,] 1 . . . . .

## [2,] . -1 -1 -1 . .

## [3,] . 1 -1 -1 . .

## [4,] . . 2 -1 . .

## [5,] . . . 3 . .

## [6,] . . . . -1 -1

## [7,] . . . . 1 -1

## [8,] . . . . . 2

BCqr <- outBC$qr

R1 <- qr.R(BCqr); Q1 <- qr.Q(BCqr)

S1 <- solve(R1) # inverse of R1

round(S1,3)

## 1 2 3 4 5 6

## (Intercept) -0.144 0.000 0.000 0.000 0.000 0.000

## Ht1 0.000 0.204 0.000 0.000 0.000 0.000

## Ht2 0.000 0.000 0.118 0.000 0.000 0.000

## Ht3 0.000 0.000 0.000 0.083 0.000 0.000

## Hp1 0.000 0.000 0.000 0.000 -0.177 0.000

## Hp2 0.000 0.000 0.000 0.000 0.000 0.102

Vectors in X have a unique representation as Xθ, with

θ ∈ Θ = {Mt : t ∈ R6}.

The coefficients t̂ for which ŷ = X̃t̂ are contained in outBC. The coefficients

θ̂ = Mt̂ satisfy the sum constraints and ŷ = Xθ̂.

that <- outBC$coef

thetahat <- as.vector(MM %*% that)

round(outBC$coeff,3)

## (Intercept) Ht1 Ht2 Ht3 Hp1 Hp2

## 2.622 -0.829 0.086 -0.154 0.234 0.587

round( thetahat,3) # need some names

## [1] 2.622 0.897 -0.760 0.325 -0.461 -0.822 -0.353 1.175

We can get t̂ in a more explicit form by solving the equation ŷ = X̃t̂.
Define ∆ = Q1S1. Then

∆T X̃ = ST1 Q
T
1Q1R1 = I6.
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Delta <- Q1 %*% S1

round(t(Delta) %*% Xtilde,3)

## (Intercept) Ht1 Ht2 Ht3 Hp1 Hp2

## 1 1 0 0 0 0 0

## 2 0 1 0 0 0 0

## 3 0 0 1 0 0 0

## 4 0 0 0 1 0 0

## 5 0 0 0 0 1 0

## 6 0 0 0 0 0 1

Then

t̂ = (∆T X̃)t̂ = ∆T ŷ = ST1 Q
T
1Q1Q

T
1 y = ∆T y

Under the θ model, with θ = Mτ , we have

θ̂ = Mt̂ = M∆T (X̃τ + ξ)

= θ + M∆T ξ

∼ N(θ, σ2M(ST1 S1)MT ) because M∆T∆MT = MST1 S1MT .

Now we can calculate estimated stand errors, t-values, and p-value in
much the same way as for the full rank case.
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