Chapter 6

Normal errors

6	Nor	mal errors	1
	1	The multivariate normal and related distributions	1
	2	Rotation of axes	3
	3	Facts about the multivariate normal	6
	4	Least squares	6
	5	Some t-tests and p -values $\ldots \ldots \ldots$	7

1 The multivariate normal and related distributions

Let Z_1, Z_2, \ldots, Z_n be independent N(0, 1) random variables. When treated as the coordinates of a point in \mathbb{R}^n they define a random vector \mathbf{Z} , whose (joint) density function is

$$f(\mathbf{z}) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i} z_{i}^{2}\right) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \|\mathbf{z}\|^{2}\right).$$

Such a random vector is said to have a *spherical normal distribution*. That is, $\mathbf{Z} \sim N(0, I_n)$.

- (i) The *chi-square*, χ_n^2 , is defined as the distribution of the sum of squares $Z_1^2 + \cdots + Z_n^2$ of independent N(0,1) random variables. The *noncentral chi-square*, $\chi_n^2(\gamma)$, with noncentrality parameter $\gamma \ge 0$ is defined as the distribution of the sum of squares $(Z_1 + \gamma)^2 + Z_2 \cdots + Z_n^2$.
- (ii) If $Z \sim N(0,1)$ is independent of $S_k^2 \sim \chi_k^2$ then

$$\frac{Z}{\sqrt{S_k^2/k}}$$
 has a *t*-distribution on *k* degrees of freedom (t_k)

(iii) If
$$S_k^2 \sim \chi_k^2$$
 is independent of $S_\ell^2 \sim \chi_\ell^2$ then

$$\frac{S_\ell^2/\ell}{S_k^2/k}$$
has an *F*-distribution on ℓ and *k* degrees of freedom ($F_{\ell,k}$)

The t disributions are actually not much different from the normal if the degrees of freedom and not too small.

```
xx <- seq(-6,6,by=0.01)
Ti <- dt(xx,1); T5 <- dt(xx,5); T10 <- dt(xx,10); T20 <- dt(xx,20); NN <- dnorm(xx)
plot(xx,NN,col="red",xlab="",ylab="density",type="1")
lines(xx,T20,col="blue"); lines(xx,T10,col="blue",lty=3)
lines(xx,T5,col="purple"); lines(xx,T1,col="purple",lty=3)
legend(2, 0.4, leg = c("normal",paste("t with ", c(1,5,10,20),"df")),lty=c(1,1,3,1,3),
col= c("red","blue","blue","purple","purple"),cex=1)
```


As the degrees of freedom increase, the density at zero increases to the value of the normal density at zero.

2 Rotation of axes

The spherical symmetry of the density $f(\cdot)$ is responsible for an important property of multivariate normals. Let $\mathbf{q}_1, \ldots, \mathbf{q}_n$ be a new orthonormal basis for \mathbb{R}^n , and let

$$\mathbf{Z} = W_1 \mathbf{q}_1 + \dots + W_n \mathbf{q}_n$$

be the representation for \mathbf{Z} in the new basis.

<6.1> **Theorem.** The W_1, \ldots, W_n are also independent N(0,1) distributed random variables.

If you know about multivariate moment generating functions this is easy to establish using the matrix representation $\mathbf{Z} = Q\mathbf{W}$, where Q is the orthogonal matrix with columns $\mathbf{q}_1, \ldots, \mathbf{q}_n$.

A more intuitive explanation is based on the approximation

 $\mathbb{P}\{\mathbf{Z} \in B\} \approx f(\mathbf{z}) \text{(volume of } B)$

for a small ball B centered at \mathbf{z} . The transformation from \mathbf{Z} to \mathbf{W} corresponds to a rotation, so

 $\mathbb{P}\{\mathbf{Z}\in B\}=\mathbb{P}\{\mathbf{W}\in B^*\},\$

where B^* is a ball of the same radius, but centered at the point $\mathbf{w} = (w_1, \ldots, w_n)$ for which $w_1\mathbf{q}_1 + \cdots + w_n\mathbf{q}_n = \mathbf{z}$. The last equality implies $\|\mathbf{w}\| = \|\mathbf{z}\|$, from which we get

$$\mathbb{P}\{\mathbf{W} \in B^*\} \approx (2\pi)^{-n/2} \exp(-\frac{1}{2} \|\mathbf{w}\|^2) \text{(volume of } B^*\text{)}.$$
Draft: 10 Oct 2016 ©David Pollard

 $\mathbf{3}$

That is, **W** has the asserted spherical normal density.

To prove results about the spherical normal it is often merely a matter of transforming to an appropriate orthonormal basis.

- < 6.2> **Theorem.** Let \mathfrak{X} be an *m*-dimensional subspace of \mathbb{R}^n . Let \mathbf{Z} be a vector of independent N(0, 1) random variables, and $\boldsymbol{\mu}$ be a vector of constants. Then
 - (i) the projection Î of Z onto X is independent of the projection Z − Î of Z onto X[⊥], the orthogonal complement of X.
 - (ii) $\left\| \widehat{\mathbf{Z}} \right\|^2$ has a χ_m^2 distribution.
 - (iii) $\|\mathbf{Z} + \boldsymbol{\mu}\|^2$ has a noncentral $\chi_n^2(\gamma)$ distribution, with $\gamma = \|\boldsymbol{\mu}\|$.
 - (iv) $\left\| \widehat{\mathbf{Z}} + \boldsymbol{\mu} \right\|^2$ has a noncentral $\chi_m^2(\gamma)$ distribution, with $\gamma = \| \boldsymbol{\mu} \|$.

PROOF Let $\mathbf{q}_1, \ldots, \mathbf{q}_n$ be an orthonormal basis of \mathbb{R}^n such that $\mathbf{q}_1, \ldots, \mathbf{q}_m$ span the space \mathcal{X} and $\mathbf{q}_{m+1}, \ldots, \mathbf{q}_n$ span \mathcal{X}^{\perp} . If $\mathbf{Z} = W_1 \mathbf{q}_1 + \cdots + W_n \mathbf{q}_n$ then

$$\widehat{\mathbf{Z}} = W_1 \mathbf{q}_1 + \dots + W_m \mathbf{q}_m,$$
$$\mathbf{Z} - \widehat{\mathbf{Z}} = W_{m+1} \mathbf{q}_{m+1} + \dots + W_n \mathbf{q}_n,$$
$$\|\mathbf{Z}\|^2 = W_1^2 + \dots + W_m^2,$$

from which the first two asserted properties follow.

For the third and fourth assertions, choose the basis so that $\mu = \gamma \mathbf{q}_1$. Then

$$\mathbf{Z} + \boldsymbol{\mu} = (W_1 + \gamma)\mathbf{q}_1 + W_2\mathbf{q}_2 + \dots + W_n\mathbf{q}_n$$
$$\mathbf{\widehat{Z}} + \boldsymbol{\mu} = (W_1 + \gamma)\mathbf{q}_1 + W_2\mathbf{q}_2 + \dots + W_m\mathbf{q}_m$$

from which we get the noncentral chi-squares.

<6.3> **Example.** Suppose X_1, \ldots, X_n are independent random variables, each distributed $N(\mu, \sigma^2)$. Define $\overline{X} = n^{-1} \sum_{i \le n} X_i$ and $S^2 = \sum_{i \le n} (X_i - \overline{X})^2$. Many textbooks prove the following assertion in a gruesome way:

$$\overline{X} \sim N(\mu, \sigma^2/n)$$
 independent of $S^2/\sigma^2 \sim \chi^2_{n-1}.$

The clean proof uses the fact that the random variables $Z_i = (X_i - \mu)/\sigma$ are independent N(0, 1)'s, so that $\mathbf{Z} = (Z_1, \dots, Z_n) \sim N(0, I_n)$. Define

 $q_1 = 1/\sqrt{n}$ then find q_2, \ldots, q_n so that $\{q_i : 1 \le i \le n\}$ is an onb for \mathbb{R}^n . (Actually it is not necessary to calculate q_2, \ldots, q_n explicitly. It suffices to know that such q_i 's exist.)

From Theorem $\langle 6.1 \rangle$, if

$$\mathbf{Z} = W_1 q_1 + \dots + W_n q_n$$

then the W_i 's are independent N(0,1). In particular,

$$\overline{Z} = \mathbb{1}^T \mathbf{Z}/n = q_1^T \mathbf{Z}/\sqrt{n} = W_1/\sqrt{n} \sim N(0, 1/n)$$

so that

$$\overline{X} = \mu + \sigma \overline{Z} \sim N(\mu, \sigma^2/n).$$

Also $\mathbf{Z} - \overline{Z} \mathbb{1} = \sum_{i=2}^{n} W_i q_i$ so that

$$S^{2} = \sigma^{2} \sum_{i \leq n} (Z_{i} - \overline{Z})^{2} = \sigma^{2} \sum_{2 \leq i \leq n} W_{i}^{2}.$$

The independence comes from the fact that \overline{X} is a function of W_1 and S^2 is a function of W_2, \ldots, W_n . Notice also that

$$\frac{\sqrt{n}(\overline{X}-\mu)}{\sqrt{S^2/(n-1)}} = \frac{\sqrt{n}\sigma\overline{Z}}{\sigma\sqrt{(Z_i-\overline{Z})^2}/(n-1)} = \frac{W_1}{\sqrt{\sum_{i\geq 2}W_i^2/(n-1)}} \sim t_{n-1}.$$

The final assertion comes from the fact that $W_1 \sim N(0, 1)$ independently of $\sum_{i\geq 2} W_i^2 \sim \chi_{n-1}^2.$ Now suppose we were wondering if μ were really zero. If it were, then

$$T_{obs} = \frac{\sqrt{n}\overline{X}}{\sqrt{S^2/(n-1)}}$$

would be distributed t_{n-1} . We could then calculate a two-sided p-value, $p_{obs} = \operatorname{tail}(T_{obs}, n-1)$ where

$$\operatorname{tail}(x, n-1)) = \mathbb{P}\{|T| \ge x\} \quad \text{for } T \sim t_{n-1}.$$

If p_{obs} is very small then we are faced with a choice between " $\mu = 0$ and we have just observed the occurrence of a rare event" or " $|T_{obs}|$ is large, perhaps because $|\mu|$ is a long way from zero."

3 Facts about the multivariate normal

Suppose $Z \sim N(0, I_n)$ and μ is an $m \times 1$ vector of constants. If A is an $m \times n$ matrix of constants then the random vector $X = \mu + AZ$ has expected value μ with variance matrix V = AA', and moment generating function

$$\mathbb{E}\exp(t^T X) = \exp(t^T \mu + t^T A A^T t/2) = \exp(t^T \mu + t^T V t/2).$$

The distribution of X depends only on μ and V. The random vector X has a $N(\mu, V)$ distribution.

If γ is a $k\times 1$ vector of constants and B is a $k\times m$ matrix of constants then

$$\gamma + BX = (\gamma + B\mu) + BAZ \sim N(\gamma + B\mu, BVB').$$

4 Least squares

Much of the distribution theory for least squares has been worked out for the simple model where $y = \mu + \xi \sim N(\mu, \sigma^2 I_n)$, where the unknown μ is assumed to lie in some known *p*-dimensional subspace \mathfrak{X} of \mathbb{R}^n and σ^2 is unknown.

Write ξ as $\sigma \mathbf{Z}$, where $\mathbf{Z} \sim N(0, I_n)$. Let q_1, \ldots, q_n be an onb for \mathbb{R}^n such that q_1, \ldots, q_p are an onb for \mathfrak{X} and q_{p+1}, \ldots, q_n are an onb for \mathfrak{X}^{\perp} . Then $\mathbf{Z} = \sum_{i \leq n} W_i q_i$ with, by Theorem <6.1>, $\mathbf{W} \sim N(0, I_n)$. The matrix

$$H = \sum_{i < p} q_i q_i^T$$

projects vectors orthogonally onto \mathfrak{X} . Thus

$$\begin{split} \widehat{y} &= H(\mu + \sigma \mathbf{Z}) = \mu + \sigma H \mathbf{Z} = \mu + \sigma \sum_{i \leq p} W_i q_i \\ y - \widehat{y} &= \sigma \sum_{i > p} W_i. \end{split}$$

Independence of the W_i 's implies that \hat{y} and $y - \hat{y}$ are independent, with

$$y \sim N(\mu, \sigma^2 H)$$
 and $y - \hat{y} \sim N(0, \sigma^2 (I_n - H))$

Under the model, the residual sum of squares equals

RSS =
$$||y - \hat{y}||^2 = \sigma^2 \sum_{i>p} W_i^2$$
,

which implies that $\operatorname{RSS}/\sigma^2 \sim \chi^2_{n-p}$. The estimate of σ^2 is $\hat{\sigma}^2 = \operatorname{RSS}/(n-p)$, which is independent of \hat{y} .

5 Some t-tests and *p*-values

Consider first the simplest case where X is an $n \times p$ matrix of rank p and the θ model posits that $y \sim N(X\theta, \sigma^2 I_n)$. That is, $\mathbb{E}_{\theta} y = X\theta$ and $y = X\theta + \xi$ where $\xi \sim N(0, \sigma^2 I_n)$.

The matrix X has a qr-decomposition $X = Q_1 R_1$ where Q_1 is an $n \times p$ matrix whose columns provide an onb for \mathfrak{X} and R_1 is an $p \times p$ upper-triangular matrix of rank p, that R_1 has an $p \times p$ inverse S_1 .

The orthogonal projection of y onto \mathfrak{X} equals Hy, for hat matrix $H = Q_1 Q_1^T$. The least squares estimator $\hat{\theta}$ is defined by $\hat{y} = X \hat{\theta}$. That is,

$$\widehat{y} = Q_1 Q_1^T y = Q_1 R_1 \widehat{\theta} \quad \text{AND} \quad \widehat{\theta} = S_1 Q_1^T \widehat{y} = S_1 Q_1^T y$$

Under the model, $\hat{\theta} \sim N(\theta, \sigma^2 S_1 S_1^T)$. In particular, $\hat{\theta}_j \sim N(\theta_j, \sigma^2 v_j^2)$, where v_j^2 is the *j*th diagonal element of $S_1 S_1^T$.

By the independence of \hat{y} and RSS, under the θ model

$$\frac{\widehat{\theta}_j - \theta_j}{v_j \widehat{\sigma}} = \frac{\left(\widehat{\theta}_j - \theta_j\right) / (v_1 \sigma)}{\sqrt{\text{RSS}/(n-p)\sigma^2}} \sim t_{n-p}.$$

If $\theta_j = 0$ then, under the model,

 $T_{obs,j} = \widehat{\theta}_j / (v_j \widehat{\sigma}) \sim t_{n-p}.$

We could then calculate a two-sided p-value, $p_{obs,j} = tail(T_{obs,j}, n-p)$ where

$$\operatorname{tail}(x, n-p)) = \mathbb{P}\{|T| \ge x\} \quad \text{for } T \sim t_{n-p}.$$

The interpretation parallels the interpretation in Example $\langle 6.3 \rangle$. For example, in the following summary table, each line gives the name corresponding to θ_j , the estimate $v_j \hat{\sigma}$ for the square root of $\operatorname{var}(\hat{\theta}_j)$, the ratio $T_{obs,j}$, and $p_{obs,j}$. Formally the *p*-value corresponds to a test of the null hypothesis $\theta_j = 0$ under the θ model. If the model is badly wrong then the *p*-value has little meaning.

```
cath <- read.table("catheter.txt",header=T)</pre>
outHW <- lm(distance ~ height + weight, cath)
look(outHW)
## lm(formula = distance ~ height + weight, data = cath)
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  21.008
                               8.751
                                        2.401
                                                 0.040
## height
                   0.196
                               0.361
                                        0.545
                                                 0.599
## weight
                   0.191
                               0.165
                                        1.155
                                                 0.278
```

As a check:

```
HWqr <- outHW$qr
R1 <- qr.R(HWqr); Q1 <- qr.Q(HWqr)
varhat <- sum(outHW$residuals^2)/outHW$df.residual</pre>
S1S1t <-chol2inv(R1) # fancy way to calculate (R1^T R1)^{-1}
std.err <- sqrt( varhat * diag(S1S1t) )</pre>
S1S1t <-chol2inv(R1)
tval <- outHW$coeff/std.err</pre>
pval <- 2*pt(tval,outHW$df,lower.tail=F)</pre>
round( cbind(outHW$coeff,std.err,tval,pval), 3)
##
                       std.err tval pval
                         8.751 2.401 0.040
## (Intercept) 21.008
## height
                0.196
                         0.361 0.545 0.599
## weight
                0.191
                         0.165 1.155 0.278
```

Now for the harder case where the matrix X has rank m < p. For example, for the Box-Cox data discussed in Contrasts.pdf, the conceptual design matrix prescribed by lm(rate ~ Ht + Hp,BC) is a 48×8 matrix

 $X = (\mathbb{1}_{48}, F_1, F_2, F_3, F_4, G_1, G_2, G_3)$

where $F = (F_1, F_2, F_3, F_4)$ is the matrix of summy variables for the factor Ht and $G = (G_1, G_2, G_3)$ is the matrix of summy variables for the factor Hp

By means of the (Helmert) contrasts for the two factors Ht and Hp, **R** replaces X by the 48×6 matrix

$$\widetilde{X} = X\mathbb{M}$$
 where $\mathbb{M} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & C_4 & 0 \\ 0 & 0 & C_3 \end{pmatrix}$,

which has rank 6. The matrix \hat{X} has qr-decomposition Q_1R_1 where Q_1 is a 48×6 matrix whose columns provide an onb for the 6-dimensional subspace \mathcal{X} for \mathbb{R}^{48} spanned by the columns of X. The 6×6 upper triangular matrix R_1 has inverse S_1 .

```
Xtilde <- model.matrix(outBC)
C3 <- contrasts(BC$Hp)
C4 <- contrasts(BC$Ht)
MM <-bdiag(1,C4,C3)
print(MM)</pre>
```

```
## 8 x 6 sparse Matrix of class "dgCMatrix"
##
## [1,] 1
## [2,] . -1 -1 -1
## [3,] . 1 -1 -1
## [4,] . . 2 -1
## [5,] . . . 3
## [6,] . . . . -1 -1
## [7,] . . . . 1 -1
## [8,] .
                       2
          . . . .
BCqr <- outBC$qr
R1 <- qr.R(BCqr); Q1 <- qr.Q(BCqr)
S1 <- solve(R1) # inverse of R1
round(S1,3)
##
                         2
                                3
                                             5
                    1
                                     4
## (Intercept) -0.144 0.000 0.000 0.000 0.000 0.000
## Ht1
               0.000 0.204 0.000 0.000 0.000 0.000
## Ht2
               0.000 0.000 0.118 0.000 0.000 0.000
## Ht3
               0.000 0.000 0.000 0.083 0.000 0.000
               0.000 0.000 0.000 0.000 -0.177 0.000
## Hp1
               0.000 0.000 0.000 0.000 0.000 0.102
## Hp2
```

Vectors in \mathfrak{X} have a unique representation as $X\theta$, with

 $\theta \in \Theta = \{ \mathbb{M}t : t \in \mathbb{R}^6 \}.$

The coefficients \hat{t} for which $\hat{y} = \tilde{X}\hat{t}$ are contained in outBC. The coefficients $\widehat{\theta} = \mathbb{M}\widehat{t}$ satisfy the sum constraints and $\widehat{y} = X\widehat{\theta}$.

```
that <- outBC$coef
thetahat <- as.vector(MM %*% that)
round(outBC$coeff,3)
## (Intercept)
                      Ht1
                                  Ht2
                                              Ht3
                                                                    Hp2
0.587
                                                          Hp1
                   -0.829
                                0.086
                                            -0.154
                                                        0.234
        2.622
##
round( thetahat.3) # need some names
## [1] 2.622 0.897 -0.760 0.325 -0.461 -0.822 -0.353 1.175
```

We can get \hat{t} in a more explicit form by solving the equation $\hat{y} = \tilde{X}\hat{t}$. Define $\Delta = Q_1 S_1$. Then

```
\Delta^T \widetilde{X} = S_1^T Q_1^T Q_1 R_1 = I_6.
Draft: 10 Oct 2016 ©David Pollard
```

6

```
Delta <- Q1 %*% S1
round(t(Delta) %*% Xtilde,3)
     (Intercept) Ht1 Ht2 Ht3 Hp1 Hp2
##
## 1
               1
                   0
                        0
                            0
                                0
## 2
               0
                            0
                                0
                    1
                        0
## 3
               0
                        1
                            0
                   0
                                0
               0
                   0
                        0
                            1
                                0
## 4
                        0
                            0
## 5
               0
                   0
                                1
## 6
               0 0 0 0
                                0
```

Then

$$\hat{t} = (\Delta^T \tilde{X})\hat{t} = \Delta^T \hat{y} = S_1^T Q_1^T Q_1 Q_1^T y = \Delta^T y$$

Under the θ model, with $\theta = \mathbb{M}\tau$, we have

$$\begin{aligned} \widehat{\theta} &= \mathbb{M}\widehat{t} = \mathbb{M}\Delta^{T}(\widetilde{X}\tau + \xi) \\ &= \theta + \mathbb{M}\Delta^{T}\xi \\ &\sim N(\theta, \sigma^{2}\mathbb{M}(S_{1}^{T}S_{1})\mathbb{M}^{T}) \qquad \text{because } \mathbb{M}\Delta^{T}\Delta\mathbb{M}^{T} = \mathbb{M}S_{1}^{T}S_{1}\mathbb{M}^{T}. \end{aligned}$$

Now we can calculate estimated stand errors, t-values, and p-value in much the same way as for the full rank case.