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The multivariate normal and related distributions

Let Zy,Zs, ..., Zy, be independent N (0, 1) random variables. When treated
as the coordinates of a point in R™ they define a random vector Z, whose
(joint) density function is

f(z) = @m) " Pexp (=33 22) = (2m) 2 exp (~ 1 |2))

Such a random vector is said to have a spherical normal distribution.
That is, Z ~ N(0, I,,).

(i) The chi-square, X2, is defined as the distribution of the sum of
squares Z2 + -+ + Z2 of independent N (0, 1) random variables. The
noncentral chi-square, x2(v), with noncentrality parameter v > 0 is
defined as the distribution of the sum of squares (Z1+7)?+Zy - - -+ Z2.

ii) If Z ~ N(0,1) is independent of S2 ~ x2 then
k k

has a t-distribution on k degrees of freedom (t)
S2/k
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(iii) If SZ ~ x2 is independent of S? ~ x? then

S2/0

52k has an F-distribution on ¢ and k degrees of freedom (Fp )

The t disributions are actually not much different from the normal if the
degrees of freedom and not too small.

xx <- seq(-6,6,by=0.01)

T1 <- dt(xx,1); T6 <- dt(xx,5); T10 <- dt(xx,10); T20 <- dt(xx,20); NN <- dnorm(xx)
plot (xx,NN,col="red",xlab="",ylab="density",type="1")

lines(xx,T20,col="blue"); lines(xx,T10,col="blue",lty=3)

lines(xx,T5,col="purple"); lines(xx,T1,col="purple",lty=3)

legend(2, 0.4, leg = c("normal",paste("t with ", c(1,5,10,20),"df")),1ty=c(1,1,3,1,3),

non

col= c("red","blue","blue","purple","purple"),cex=1)
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As the degrees of freedom increase, the density at zero increases to the
value of the normal density at zero.
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Rotation of axes

The spherical symmetry of the density f(-) is responsible for an important
property of multivariate normals. Let q1, ..., q, be a new orthonormal basis
for R™, and let

Z=Wiqi+ -+ Whan
be the representation for Z in the new basis.

Theorem. The Wy,..., W, are also independent N(0,1) distributed ran-
dom variables.

If you know about multivariate moment generating functions this is easy
to establish using the matrix representation Z = QW, where @ is the or-
thogonal matrix with columns q, ..., qn,.

0N ball B (in Z-coordinates) = ball B* (in W-coordinates)

. m
N

N

A 4

2

A more intuitive explanation is based on the approximation
P{Z € B} ~ f(z)(volume of B)

for a small ball B centered at z. The transformation from Z to W corre-
sponds to a rotation, so

P{Z € B} = P{W € B*},

where B* is a ball of the same radius, but centered at the point w =
(w1, ..., wy) for which wiq; + -+ + wpqy, = z. The last equality implies
|lw|| = ||z||, from which we get

P{W € B*} ~ (27) "/? exp(—3 [w]|?)(volume of B*).
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That is, W has the asserted spherical normal density.
To prove results about the spherical normal it is often merely a matter
of transforming to an appropriate orthonormal basis.

Theorem. Let X be an m-dimensional subspace of R™. Let Z be a vector of
independent N (0,1) random variables, and p be a vector of constants. Then

(i) the projection Z of Z onto X is independent of the projection Z — Z of
Z onto X+, the orthogonal complement of X.

(i1) HZHz has a 2, distribution.

(iii) | Z + w||?® has a noncentral x2(v) distribution, with v = ||p||.

(iv) HZ + uH2 has a noncentral x2,(v) distribution, with v = || p||.
ProOOF Let qi,...q, be an orthonormal basis of R™ such that qi,...,qm

span the space X and Quui1,...,qn span Xt If Z = Wiqr + - + Waan
then

=Wiqi + -+ Wnam,

N N)

Z -7 =Wpni1dms1 + -+ Wiay,
|Z|? = WP+ + W2,

from which the first two asserted properties follow.
For the third and fourth assertions, choose the basis so that u = vq;.
Then

Z+p=Wi+v)a +Waqa+... + Woan
Z+p=(Wi+9)a+ Wz + -+ Windsm

from which we get the noncentral chi-squares.
Example. Suppose X1, ..., X, are independent random variables, each dis-

tributed N(u,0?). Define X = n~! Zign X, and S? = Zign(Xi - X)%
Many textbooks prove the following assertion in a gruesome way:

X ~ N(pu, 02/n) independent of 5’2/02 ~ xi_l.

The clean proof uses the fact that the random variables Z; = (X; — u) /o
are independent N(0,1)’s, so that Z = (Z1,...,Z,) ~ N(0,1,). Define
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¢1 = 1/+/n then find ¢o,...,q, so that {g; : 1 < i < n} is an onb for R".
(Actually it is not necessary to calculate go, ..., g, explicitly. It suffices to
know that such ¢;’s exist.

From Theorem <6.1>, if

Z=Wiq+- -+ Wy
then the W;’s are independent N(0,1). In particular,
Z=1"Z/n=q[Z/v/n=Wi/v/n ~ N(0,1/n)
so that
X =pu+0Z ~ N(u,o?/n).

Also Z — Z1 = Y"1 , Wig; so that

2 _ 2 T2 2 2
S“ =0 Zign(Zl 2 =0 Z2§z‘§nWZ'

The independence comes from the fact that X is a function of Wi and S?
is a function of Wy, ..., W,,. Notice also that

V(X —p) VnoZ Wi

= ~tp—1.

\/m N o\ (Z;—Z)? /(n—1) - \/zizgwf/(n_l)‘

The final assertion comes from the fact that W1 ~ N(0,1) independently of
2722 VVz? ~ X%fl-
Now suppose we were wondering if u were really zero. If it were, then
VnX
S/ —1)

Tops =
would be distributed ¢,—;. We could then calculate a two-sided p-value,
Pobs = tail(Typs,n — 1) where

tail(z,n — 1)) = P{|T| > z} for T ~t,_;.

If pops is very small then we are faced with a choice between “u = 0 and we
have just observed the occurrence of a rare event” or “|Typs| is large, perhaps
because |u| is a long way from zero.”
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Facts about the multivariate normal

Suppose Z ~ N(0,1I,) and p is an m x 1 vector of constants. If A is an
m X n matrix of constants then the random vector X = u+ AZ has expected
value p with variance matrix V = AA’, and moment generating function

Eexp(t! X) = exp(tT pu +tT AATt/2) = exp(t’ p + tTV1/2).

The distribution of X depends only on p and V. The random vector X has
a N(u, V) distribution.

If v is a k x 1 vector of constants and B is a k X m matrix of constants
then

v+ BX = (y+ Bp) + BAZ ~ N(y + Bu, BVB)).

Least squares

Much of the distribution theory for least squares has been worked out for
the simple model where y = pu + & ~ N(u,02l,), where the unknown g is
assumed to lie in some known p-dimensional subspace X of R™ and o2 is
unknown.

Write £ as 0Z, where Z ~ N (0, I,,). Let q1,..., g, be an onb for R" such
that qi1,...,q, are an onb for X and ¢y41,...,¢, are an onb for X+. Then
Z =), ., Wiq; with, by Theorem <6.1>, W ~ N(0, I,,).

The matrix

_ o
H=)_ _

projects vectors orthogonally onto X. Thus
J=H(u+0Z)=p+ocHZ = u+azi§pWiqi
y—y=o i Wi.
Independence of the W;’s implies that y and y — ¥ are independent, with
y~ N(u,0?H) AND y—7~ N(0,0%(I, — H)).
Under the model, the residual sum of squares equals

RSS=ly—gl* =o?>_ WP

which implies that RSS/0? ~ x2_,. The estimate of 02 is 52 = RSS/(n—p)
is independent of 7.
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Some t-tests and p-values

Consider first the simplest case where X is an n X p matrix of rank p and the
6§ model posits that y ~ N(X6,021I,). That is, Egy = X0 and y = X0 + &
where £ ~ N(0,02%1,).

The matrix X has a qr-decomposition X = Q1R where Q1 isan n X p
matrix whose columns provide an onb for X and R; is an m X m upper-
triangular matrix of rank m, that R; has an m x m inverse S;.

The orthogonal projection of y onto X equals Hy, for hat matrix H =
Q1QT. The least squares estimate 0 is defined by y=X 9. That i is,

§:Q1Q1QZQ1R19 AND 9:5'1@1@\:51@11/

Under the model, 0 ~ N(0,0%5,ST). In particular, 0 ~ N(0;,0%v}), where
’()]2- is the jth diagonal element of S1.57 .
By the independence of ¥ and RSS, under the 6 model

0; — 0, <9j - 9j> /(v10)
— = T, Y tn_p.
vjo VRSS/(n — p)o?
If 6; = 0 then, under the model
Tobs,j = (/9\/(7}]8) ~ tn—P'
We could then calculate a two-sided p-value, poys ; = tail(Tpps j,n —p) where

tail(x,n — p)) = P{|T| > =} for T' ~ ty—yp.

That is, the interpretation parallels the interpretation in Example <6.3>.
For example, in the following summary table, each line gives the name cor-
responding to 6, the estimate v;o for the square root of var(H ), the ra-
tio Tops,j, and peps ;. Formally the p-value corresponds to a test of the null
hypothesis ¢; = 0 under the 6 model. If the model is badly wrong then
the p-value has little meaning.

cath <- read.table("catheter.txt",header=T)
outHW <- Im(distance ~ height + weight,cath)
look (outHW)

## 1m(formula = distance ~ height + weight, data = cath)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21.008 8.7561  2.401 0.040
## height 0.196 0.361 0.545 0.599
## weight 0.191 0.165 1.155 0.278
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Now for the harder case where the matrix X has rank m < p. For exam-
ple, for the Box-Cox data discussed in Contrasts.pdf, the conceptual design
matrix prescribed by lm( rate ~ treatment + poison,BC) is a 48 x 8 ma-
trix

X = (]1487F17F27F37F47G17G27G3)

where F' = (F1, Fy, F3, Fy) is the matrix of summy variables for the factor
Ht and G = (G1, G2, G3) is the matrix of summy variables for the factor Hp

By means of the (Helmert) contrasts for the two factors Ht and Hp, R
replaces X by the 48 x 6 matrix

N 1 0 0
X =XM where M= |0 Cy 0 |,
0 0 C3

which has rank 6. The matrix X has qr-decomposition Q1 R; where (1 is a
48 x6 matrix whose columns provide an onb for the 6-dimensional subspace X
for R*® spanned by the columns of X. The 6 x 6 upper triangular matrix R,

XX <- model.matrix(outBC)
C3 <- contr.helmert(3)

C4 <- contr.helmert(4)

MM <-bdiag(1,C3,C4)

print (MM)

## 8 x 6 sparse Matrix of class "dgCMatrix"
#i#

# [1,] 1

## [2,] . -1 -1

## [3,] . 1 -1

# 4,1 . . 2 . . .
# [5,] . . . -1-1-1
# [6,] . . . 1-1-1
# [7,] . . . . 2-1
# [8,] . . . . . 3

BCqr <- outBC$qr

R1 <- qr.R(BCqr); Q1 <- qr.Q(BCqr)
S1 <- solve(R1)

round(R1,1)

Draft: 4 Oct 2016 (© David Pollard 8




Stat 312/612

##  (Intercept) Htl Ht2 Ht3 Hpl Hp2

## 1 -6.9 0.0 0.0 0 0.0 0.0
## 2 0.04.90.0 0 0.00.0
## 3 0.0 0.0 8.5 0 0.00.0
## 4 0.0 0.0 0.0 12 0.0 0.0
## 5 0.0 0.00.0 0 -5.70.0
## 6 0.0 0.0 0.0 0 0.0 9.8

It has inverse S7. Define A = @157. Then

ATX = STQTQIR, = Iy

Delta <- Q1 %*Y% S1
round (t (Delta) %*% XX,3)

##  (Intercept) Htl Ht2 Ht3 Hpl Hp2

## 1 1 0o o0 o0 © 0
## 2 0 1 0 0 O 0
## 3 0 O 1 0 O 0
## 4 0 0 O 1 0 0
## 5 0 o o0 ©O 1 0
## 6 6 o0 o0 o0 O 1

Vectors in X have a unique representation as X6, with 6 = M¢ and ¢ €
RS. The coefficients ¢ for which § = Xt are contained in outBC.

round (outBC$coeff,3)

## (Intercept) Ht1 Ht2 Ht3 Hp1 Hp2
## 2.622 -0.829 0.086 -0.154 0.234 0.587

The coefficients § = Mt satisfy the sum constraints and §y = X 0.
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