Chapter 1

Least squares when X is not of full rank

4 September 2016
©David Pollard 2016

Consider the least squares problem where the $n \times p$ matrix X of predictors has rank m, which is $< p$. For simplicity, suppose the columns of X have been rearranged so that x_1, \ldots, x_m are linearly independent, so that x_j for $j > m$ could be written as a linear combination of the first m. (The LINPACK QR algorithm (Dongarra et al., 1993, Chapter 9) permutes the order of the columns as it applies the Householder transformations.) Partition X and the matrices Q accordingly

\[
X = n \begin{bmatrix} X_1 & X_2 \end{bmatrix} \quad \text{and} \quad Q = n \begin{bmatrix} Q_1 & Q_2 & Q_3 \end{bmatrix} = (q_1, q_2, \ldots, q_n).
\]

(The little numbers above and to the left of the matrices show the sizes of the blocks.) The QR algorithm arranges that the upper triangular matrix
has a corresponding partition.

\[
Q^T X = \begin{bmatrix}
 n & p-m \\
n-p & m & p-m
\end{bmatrix}
\begin{bmatrix}
 X_1, X_2
\end{bmatrix} =
\begin{bmatrix}
 n & p-m \\
n-p & m & p-m
\end{bmatrix}
\begin{bmatrix}
 Q_1^T X_1 & Q_2^T X_2 \\
Q_3^T X_1 & Q_3^T X_2
\end{bmatrix}
\]

\[
= \begin{bmatrix}
p \\
n-p
\end{bmatrix}
\begin{bmatrix}
 R \\
0
\end{bmatrix}
= \begin{bmatrix}
m & p-m \\
n-p & m & p-m
\end{bmatrix}
\begin{bmatrix}
 R_1 & R_2 \\
0 & 0 & 0
\end{bmatrix}
\]

so that

\[
\begin{bmatrix}
 X_1, X_2
\end{bmatrix} = Q \begin{bmatrix}
 R
\end{bmatrix} = \begin{bmatrix}
 Q_1 R_1 & Q_1 R_2 \\
0 & 0
\end{bmatrix}.
\]

That is, \(X_1 = Q_1 R_1 \) and \(X_2 = Q_1 R_2 \). Notice the effect of all the zeros in the \(R \) matrix.

The \(m \times m \) matrix \(R_1 \) is upper triangular with nonzero elements down its diagonal; it has an inverse. The columns of \(Q_1 \) provide an orthonormal basis for the subspace \(\mathcal{X} \) spanned by the columns of \(X \), which is the same as the subspace spanned by the columns of \(X_1 \). The columns of \(Q_2 \) and \(Q_3 \) span the subspace \(\mathcal{X}^\perp \). Thus

\[
X_2 = Q_1 R_2 = X_1 R_1^{-1} R_2.
\]

As asserted, the columns of \(X_2 \) are linear combinations of the columns of \(X_1 \).

The matrix \(H = Q_1 Q_1^T = \sum_{i \leq m} q_i q_i^T \) projects \(\mathbb{R}^n \) orthogonally onto the \(m \)-dimensional subspace \(\mathcal{X} \) spanned by the columns of \(X \). In particular \(\hat{y} = H y = Q_1 Q_1^T y \).

The fitted vector can also be represented non-uniquely as a linear combination of the columns of \(X \), that is, \(\hat{y} = X b \). By equality \(<1.1> \), we can also get away with a linear combination of just the \(X_1 \) columns. For some \(m \times 1 \) column vector \(\hat{d} \),

\[
Q_1 Q_1^T y = \hat{y} = X_1 d = Q_1 R_1 \hat{d}.
\]

Premultiply by \(Q_1^T \), using the fact that \(Q_1^T Q_1 = I_m \), then solve for \(\hat{d} \):

\[
\hat{d} = R_1^{-1} Q_1^T y.
\]
This solution corresponds to setting the last \(p - m \) components of \(b \) to zero. When displaying output (as in \texttt{summary()}) in R, it inserts \texttt{NA}'s (the symbol for missing data) instead of showing zeros. Why is this strategy better than just putting in zeros?

Note that \(\hat{d} \) is uniquely determined. The general solution for \(\hat{y} = Xb \) with \(b \) partitioned as \([B_1, B_2]\) is: choose \(B_2 \in \mathbb{R}^{p-m} \) arbitrarily then put \(B_1 \) equal to \(\hat{d} - R_1^{-1}R_2B_2 \):

\[
X_1\hat{d} = \hat{y} = X_1B_1 + X_2B_2 = X_1\hat{d} - X_1R_1^{-1}R_2B_2 + X_2B_2.
\]

In general there is no compelling reason to display all the possible solutions for \(\hat{b} \). In some cases, it is helpful to see a solution \(\hat{b} \) that satisfies some extra constraints. For example, for models involving factors, can be parametrized in a number of useful ways. I’ll say more about that case in a few weeks.

The \texttt{lm} object returned by the \texttt{lm()} function contains everything we need. In particular, once we know \(y \) and the \texttt{qr} component we could calculate all the information returned by the \texttt{summary} function, and more.

The file RMDdemo.Rmd, which is in the Handouts directory, provides a numerical illustration. It is written using R Markdown, a simplified version of the R Sweave that I used for \texttt{least_squares.Rnw}. R Markdown has an incomplete understanding of how \LaTeX{} works. However, if you are not familiar with \LaTeX{} you will probably want to use R Markdown for some of your homework.

\section*{References}