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1 Fisher on randomization

Fisher (1966, Chapter III) discussed in detail the analysis of an experiment
on plant growth made by Charles Darwin. After mentioning a number of
possible systematic effects due to the placement of plants within pots, Fisher
commented (page 44):

Randomisation properly carried out, in which each pair of plants
are assigned their positions independently at random, ensures
that the estimates of error will take proper care of all such causes
of different growth rates, and relieves the experimenter from the
anxiety of considering and estimating the innumerable causes
by which his data may be disturbed. The one flaw in Darwin’s
procedure was the absence of randomisation.

Later in the same chapter (page 45) he asserted that

. . . the physical act of randomisation, which, as has been shown,
is necessary for the validity of any test of significance, affords the
means, in respect of any particular body of data, of examining
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the wider hypothesis in which no normality of distribution is
implied.

He then proceeded to describe what is now often called a “Fisher randomiza-
tion test”, which uses only the probabilities supplied by the randomization.
After some “tedious” calculations he then commented that the tail proba-
bility he had obtained was “very nearly equivalent to that obtained using
the t test with the hypothesis of a normally distributed population”.

In other words, the randomization is needed to turn some systematic
effects into random noise and apparently the probabilistic analysis based
only on the randomization leads to conclusions similar to those obtained
under a model with normal errors.

Fisher’s view has not been accepted by all statisticians. Debabrata Basu
was a notable strong critic. For his insightful critique read Chapters XIV
and XV of Ghosh (1988), a collection of some of his papers and conference
talks.

2 Shoes: a paired comparison

Shoes data from Box et al. (1978, Section 4.2):

. . . measurements of the amount of wear of the soles of shoes worn
by 10 boys. The shoe soles were made of two different synthetic
materials, A and B. . . . the experiments were run in pairs. Each
boy wore a special pair of shoes, the sole of one shoe having been
made with A and the sole of the other with B. The decision as
to whether the left or the right sole was made with A or B was
determined by the flip of a coin.

. . . the variability among the boys has been eliminated. . . . by
working with the 10 differences B − A most of this boy-to-boy
variation could be eliminated. An experimental design of this
kind is called a randomized paired comparison design

I have coded the coin tosses as ±1, with +1 meaning “apply treatment
A to the left sole” and −1 meaning “apply treatment A to the right sole”.
With that convention, the difference between the B and A treatments for
boyi equals yi = xi ∗ di, where di denotes the difference “wear for right foot
minus wear for left foot”.
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shoes <- read.table("shoes.data",sep="\t",header=T)
shoes$coin <- 2 * (shoes$foot == "L") - 1 # +1 for left

shoes$BA.diff <- shoes$B - shoes$A

shoes$RL.diff <- shoes$BA.diff * shoes$coin

shoes

## A B foot.A coin BA.diff RL.diff

## 1 13.2 14.0 L 1 0.8 0.8

## 2 8.2 8.8 L 1 0.6 0.6

## 3 10.9 11.2 R -1 0.3 -0.3

## 4 14.3 14.2 L 1 -0.1 -0.1

## 5 10.7 11.8 R -1 1.1 -1.1

## 6 6.6 6.4 L 1 -0.2 -0.2

## 7 9.5 9.8 L 1 0.3 0.3

## 8 10.8 11.3 L 1 0.5 0.5

## 9 8.8 9.3 R -1 0.5 -0.5

## 10 13.3 13.6 L 1 0.3 0.3

Presumably the experimenter was seeking to learn which treatment was
better (= less wear). BHH later revealed that material B was cheaper.
So perhaps the experimenter was looking for evidence than material A did
produce significantly less wear. That hypothesis suggests the use of a one-
sided t-test: Is the difference shoes$BA.diff significantly large (positive)?

Let me start with the analysis based on the assumption that the dif-
ferences yi are independent N(δ, σ2) random variables. The estimate of σ2

is σ̂2 =
∑

i(yi− y)2/9 and the t-statistic is tstat =
√

10y/σ̂. As I am feeling
lazy I’ll let R do all the work:

summary(lm(shoes$BA.diff ~ 1))

##

## Call:

## lm(formula = shoes$BA.diff ~ 1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.610 -0.110 -0.010 0.165 0.690

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 0.4100 0.1224 3.349 0.00854 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.3872 on 9 degrees of freedom

The observed value of the t-statistics has a one-sided p-value of about 0.004.
Material A really does seem to be doing better.

3 The randomization distribution

The randomization is represented by a vector x in {−1,+1}10, which, by
construction, takes each of the 1024 possible values with probability 2−10.

Under the null hypothesis that the two treatments actually have the
same (random?) effect on the amount of wear, the random variable xi
should have no influence on di = shoes$RL.diffi. That is, x and d should
be independent. Under the null hypothesis, the observed values of yi is
just ±di, where di is the random value generated by the pecularities of each
boy’s behavior and the sign is attached independently of di.

# Create a 10 by 2^{10} matrix representing all possible

# outcomes for tosses of 10 coins

rand <- coin(10) # defined in cointoss.R

yrand <- rand * shoes$RL.diff # 1024 values for different x's

# My function tstat() calculates the t -statistic

# for each possible y:

Tstats <- apply(yrand,2,tstat)

According to Fisher, the spread in the 1024 t-statistics (one for each
possible realization of x) should look like the spread in 1024 observations
from the t9 distribution.

A plot of the sorted values of Tstats against the corresponding quantiles
of the t9 distribution,

# quantiles at 1024 p's of t_9:

tquantiles <- qt(ppoints(1024),df=9)

would be almost a straight line if the values in Tstats were spread out like
a t9 distribution.
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For the sake of comparison, I include some quantile plots for samples
taken from the t9 distribution (at least according to what R regards as a
random sample):

old.par <- par(no.readonly = T)

par(mfrow = c(3,3))

t9 <- function(p){ qt(p, df = 9) }

for (ii in 1:8){
RT <- rt(1024,df=9) # sample of size 1024 from t_9

qqplot(tquantiles,RT,pch=18,new=T)

qqline(RT,distribution = t9,col="red")

}
qqplot(tquantiles,Tstats,pch=18,new=T)

qqline(Tstats,distribution = t9,col="red")
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Are you impressed?
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The randomization test looks at where the observed value of y (namely, 0.41)
sits amongst the set of all possible y generated by different realizations of x:

ymeans <- sort(apply(yrand,2,mean))

print(ymeans[1015:1024])

## [1] 0.39 0.39 0.39 0.41 0.41 0.41 0.41 0.43 0.45 0.47

plot(ymeans, (1:1024)/1024,pch=".",xlim=c(0,0.5),

ylab="empirical distn. function of the ymeans")
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The interpretation is complicated slightly by the ties in the ymeans values.
BHH page 100 decided to count half the ties at 0.41 as being greater than
the observed value, which led to a p-value 5/1024 ≈ 0.005, impressively close
to the p-value calculated via the normal approximation.
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4 Theoretical justification of t-approximation

Several authors have tried to justify Fisher’s assertion about the approxi-
mate tn−1-distribution under the null hypothesis for

T =

√
ny√∑

i≤n(yi − y)2/(n− 1)

when the yi’s are generated by a randomization: yi = xidi. I have found the
paper by Box and Andersen (1955) the most helpful.

The idea is that the random variable

B =
T 2

n− 1 + T 2
=

ny2∑
i≤n y

2
i

would have a beta(1/2, (n − 1)/2) distribution if the yi’s were indepen-
dent N(0, σ2)’s. That beta distribution has expected value 1/n and vari-
ance 3/(n2 + 2n).

If yi = xidi, with the di’s being treated as constants, then

B = n−1
(∑

i
xifi

)2
where fi = di/

√∑
j≤n

d2j ,

which (under the randomization distribution) has expected value 1/n and a
variance that is close to 3/(n2 + 2n) if the fi’s are “not too extreme”.
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