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1 SVD

Suppose once again that X is an n× p matrix with n ≥ p. It can be shown
(Axler, 2015, Section 7.D) that there exist orthonormal bases u1, . . . , un
for Rn and v1, . . . , vp for Rp, and numbers λ1 ≥ λ2, · · · ≥ λp ≥ 0, such
that

Xvj = λjuj for 1 ≤ j ≤ p. <2.1>

In matrix form,

X(v1, . . . , vp) = (u1, . . . , up)diag(λ1, . . . , λp) or XV = UΛ

where V = (v1, . . . , vp), U = (u1, . . . , up), Λ = diag(λ1, . . . , λp).

Equivalently, because V TV = Ip = V V T ,

X = UΛV ′ =
∑

j≤p
λjujv

′
j,
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which is called the singular value decomposition of X. The λi’s are
called the singular values of X.

If λj > 0 for j ≤ m and zero otherwise then

uj = λ−1j Xvj for 1 ≤ j ≤ m,

which shows that u1, . . . , um all belong the the subspace X spanned by the
columns of X. In the other direction, if b =

∑
j≤p θjvj ∈ Rp then

Xb =
∑

j≤p
λjujv

′
jb =

∑
j≤m

λj〈vj, b〉uj =
∑

j≤m
λjθjuj, <2.2>

which shows that every linear combination of the columns ofX can be written
as a linear combination of u1, . . . , um. In other words, the subspace X has
dimension m and {u1, . . . , um} is an orthonormal basis for X.

The matrix X has full rank if and only if λj > 0 for all j.

Remark. We also have XTX = UΛV TV ΛUT = UΛ2UT , which shows
that the symmetric p × p matrix has eigenvalues λ21, . . . , λ

2
p with

corresponding eigenvectors uj . That is, XTXuj = λ2juj for 1 ≤ j ≤ p.

2 Least squares

If rank(X) = m, the matrix

H = (u1, . . . , um)(u1, . . . , um)T =
∑

j≤m
uju

T
j

projects vectors in Rn orthogonally onto X. In particular, the orthogonal
projection ŷ of a vector y onto X is given by

ŷ = Hy =
∑

i≤m
siui where si = 〈ui, y〉.

If X is of full rank then ŷ has a unique representation as Xb̂, for some b̂
in Rp. When X has rank m, the SVD gives a neat expression for all possible
solutions.

Write y as
∑

i≤n siui, where si = 〈ui, y〉, and write b as
∑

j≤p θjvj,
where θj = 〈vj, b〉. Then we need to find all values for θ such that∑

i≤m
siui = ŷ = Xb =

∑
j≤m

λjθjuj.
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The solution is given by θj = sj/λj for 1 ≤ j ≤ m and all other θj’s uncon-
strained. That is, Xb = ŷ if and only if

b =
∑

j≤m
(sj/λj)vj + w, <2.3>

where w is an element of the (p − m)-dimensional subspace of Rp spanned
by the unit vectors vm+1, . . . , vp.

If m equals p (the full rank case) then b̂ =
∑

j≤p(sj/λj)vj is the unique
solution.

Remark. If X has rank m then Xvj = λjuj = 0 for j > m. The w in
equation <2.3> always contributes 0 to Xb.

3 Spectral norm (can be skipped)

The singular vector, v1, is also the solution to a maximization problem: find
the unit vector t =

∑
j tjvj in Rp that maximizes ‖Xt‖. Indeed

‖Xt‖2 =
∥∥∥∑

j≤p
λjtjuj

∥∥∥2 =
∑

j≤m
λ2j t

2
j ,

a convex combination of λ21, . . . , λ
2
p because 1 = ‖t‖2 = t21 + · · · + t2p. The

norm ‖Xt‖ achieves its maximum value of λ1 when t21 = 1. The value λ1 is
often called the spectral norm of X, and is denoted by ‖X‖ or ‖X‖2. It
appears in many theoretical calculations and approximations involving X.

4 Perturbations and solutions of least squares

problems (skip a little bit)

Suppose X has full rank, so that the unique b̂ is given by <2.3> with w = 0,

b̂ =
∑

j≤p
(sj/λj)vj.

The representation suggests that if λp is very small then it could have a large

effect on b̂. This idea is not quite correct. After all, we could make λp as
large as we like by multiplying X by a large enough constant, without really
changing the least squares problem.
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In fact, for X of full rank, the relevant quantity is the ratio κ(X) =
λ1/λp, the so-called condition number of the matrix. When this ratio is
large, relatively small numerical errors can be magnified into relatively large
problems.

Dongarra et al. (1993, pages 9.5 and 11.4) gave a general bound for the

effect of small perturbations of X on the b̂. I’ll settle for a much simpler
construction that captures the main idea.

As before write a vector y in Rn as
∑

i≤n siui, with si = 〈ui, y〉.
Define E = upv

T
p . You should convince yourself that ‖E‖2 = 1. For a

small ε > 0 define

Xε = X − εE =

(∑
i<p

λiuiv
T
i

)
+ (λp − ε)upvTp .

That is, the only change in the svd is reduction of the smallest singular value
by ε (assuming ε < λp). The relative size of the perturbation equals

‖Xε −X‖2/‖X‖2 = ε/λ1.

The b̂ε that minimizes ‖y −Xεb‖2 is given by

b̂ε =
(∑

j<p
(sj/λj)vj

)
+ vpsp/(λp − ε) = b̂− spvp

(
λ−1p − (λp − ε)−1

)
.

That is,

b̂ε − b̂ = (sp/λp)
(
1− (1− ε/λp)−1

)
vp ≈ εsp/λ

2
p

so that
∥∥∥b̂ε − b̂∥∥∥ ≈ ε|sp|/λ2p. Compare with

∥∥∥b̂∥∥∥ =

√∑
j
s2j/λ

2
j ≈ |sp|/λp

if λp is much smaller than the other singular values and |sp| is not much

smaller than the other |sj|’s. In that case, the relative change in b̂ is approx-
imately∥∥∥b̂ε − b̂∥∥∥/ ∥∥∥b̂∥∥∥ ≈ ε/λp.

Draft: 11 Sept 2016 c©David Pollard 4



Stat 312/612

and ∥∥∥b̂ε − b̂∥∥∥/∥∥∥b̂∥∥∥
‖Xε −X‖2/‖X‖2

≈ λ1/λp = κ(X).

A lot of hand-waving in there, but it does suggest the magnifying effect of
the condition number.

See the handout Longley.pdf for some calculations involving relatively
small perturbations of a famous data set, which was used by Longley (1967)
to discuss the effect of round-off errors on least squares. His abstract:

Although there are many linear least squares programs available for use on the elec-

tronic computer, the algorithms specified in many of these programs are numerically

more appropriate for the desk calculator than for the electronic computer. Routines

which may be efficient for desk calculators may not be efficient for electronic com-

puters. Since most computers carry about eight digits in the calculations, routines

which do not take the problem of round-off errors and truncation into account may

produce inaccurate numerical results. The difficulty is that the user will not know

whether the results are accurate. Experiments with routine test problems using

economic data indicated that either the data must be modified to fit the program or

that the program must be altered to fit the data before numerical accuracy could be

obtained on most programs tested. If the full potential of the electronic computer

is to be achieved, an understanding of the basic arithmetic operations and their

effect on the accuracy of the results is essential.

In the handout I mess with b̂ by making small changes in X and y.
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