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To be continued.

1 A data set

From ?housing after library(MASS): The housing data frame has 72 rows
and 5 variables, cross-classifying 1681 individuals by:

Sat. Satisfaction of householders with their present housing circumstances,
(High, Medium or Low, ordered factor).

Infl. Perceived degree of influence householders have on the management
of the property (High, Medium, Low).

Type. Type of rental accommodation, (Tower, Atrium, Apartment, Ter-
race).

Cont. Contact residents are afforded with other residents, (Low, High).

Freq. Frequencies: the numbers of residents in each class.

head(housing)

## Sat Infl Type Cont Freq

## 1 Low Low Tower Low 21

## 2 Medium Low Tower Low 21

## 3 High Low Tower Low 28
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## 4 Low Medium Tower Low 34

## 5 Medium Medium Tower Low 22

## 6 High Medium Tower Low 36

Regard Sat as the response and Infl, Type, and Cont as predictors. A
simple model: each individual has a fixed probability of ending up in each
response category,

pi,t,,c,s = P{Sat = s, Infl = i, Type = t, Cont = c}
= P{Infl = i, Type = t, Cont = c}×

P{Sat = s | Infl = i, Type = t, Cont = c}
= γitc × pi,t,c(s)

and individuals behave independently. For interpretation we are mostly
interested in the conditional probabilities pi,t,c(s).

For glm(), the quantities log(picts) are modelled as linear functions of
the predictors, which are estimated by maximum likelihood. That is, the
estimators are chosen to maximize the likelihood function

L1681 =
∏1681

α=1
piα,tα,cα(sα)γiα,tα,cα ,

where (sα, iα, tα, cα) are the observed levels of the factors for individual α.
Of course each piα,tα,cα(sα)γiα,tα,cα needs to be rewritten as functions of the
unknown parameters.

The housing data set does not give the individual responses. Luckily the
likelihood only depends on aggregated counts. If

Nitcs = Freq[Sat = s, Infl = i, Type = t, Cont = c]

denotes the number of individuals for which iα = i, tα = t, cα = c, sα = s
then

logL1681 =
∑

s,i,t,c
Nitcs (log pitc(s) + log γitc) .

With count data of this form it is common to model the sample size N =∑
i,t,c,sNitcs as random, with a Poisson(λ) distribution. That is,

P{N = n} = e−λ
λn

n!
for n = 0, 1, . . . .

(For the housing data the observed N equals 1681.) Under this model
the Nitcs’s become independent Poisson random variables, with expected
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values λpitcs(s). Fortunately, the log-likelihood when N = n is only slightly
different from logLn:

log-likelihood = −λ+ n log λ− log(n!) + Ln.

The p̂itcs’s under the Poisson model are the same as th p̂itcs’s that maxi-
mize Ln; and λ̂ = n. In short, the maximum likelihood fit is essentially
the same for the fixed N and random N models, which is the main rea-
son for the common choice family = poisson when fitting count data by
maximum likelihood.

Let me try to reproduce the analysis given by (Venables and Ripley,
2002, Section 7.3). First they fitted the model

log pitcs = θitc + δs.

hous0 <- glm(Freq ~ Infl*Type*Cont + Sat,

family = poisson, data = housing)

# for comparison with V\&R p200:

print(c(hous0$null.deviance,hous0$deviance, hous0$df.resid))

## [1] 833.657 217.456 46.000

plot(housing$Freq,resid(hous0))
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Don’t worry about the meaning of “deviance” for the moment. I included
it just to check that I was fitting the same model as V&R. Not a great fit.

Next they fitted the model

log pitcs = θitc + θsi + θst + θsc.

hous1 <- glm(Freq ~ Infl*Type*Cont + Sat:(Infl+Type+Cont),

family = poisson, data = housing)

# for comparison with V\&R p200:

print(c(hous1$null.deviance,hous1$deviance,hous1$df.resid))

## [1] 833.6570 38.6622 34.0000

plot(housing$Freq,resid(hous1))
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To conserve on space I’ll abbreviate the factor levels before displaying
the coefficients.

round(hous1.abb$coeff,1)

## (Intercept) iM iH tAp tAt tTr

## 3.1 0.2 -0.4 0.3 -0.8 -1.0

## cM iM:tAp iH:tAp iM:tAt iH:tAt iM:tTr

## 0.0 0.0 0.4 -0.4 0.0 0.2

## iH:tTr iM:cM iH:cM tAp:cM tAt:cM tTr:cM
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## 0.3 -0.2 -0.7 0.6 0.7 1.2

## iL:s.L iM:s.L iH:s.L iL:s.Q iM:s.Q iH:s.Q

## -0.1 0.4 1.0 0.3 0.2 0.4

## tAp:s.L tAt:s.L tTr:s.L tAp:s.Q tAt:s.Q tTr:s.Q

## -0.5 -0.3 -1.0 0.1 -0.3 0.0

## cM:s.L cM:s.Q iM:tAp:cM iH:tAp:cM iM:tAt:cM iH:tAt:cM

## 0.3 -0.1 0.0 0.1 0.2 0.5

## iM:tTr:cM iH:tTr:cM

## -0.5 -0.5

Then V&R started to fiddle around with other slightly different models.

2 Deviance and measures of fit

The housing data set contains counts of numbers of individuals (Freq) for
each of the combinations of the four factors. The models lead to estimated
counts. We need some measure of how close these two sets of counts are to
each other.

plot(housing$Freq,fitted(hous1))
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There are several common ways to measure how close the fitted values
are to the data. [To be continued.]
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3 Structural zeros

(McCullagh and Nelder, 1989, page 14; Chapter 6)
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