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1 A data set

From ?housing after library(MASS): The housing data frame has 72 rows
and 5 variables, cross-classifying 1681 individuals by:

Sat. Satisfaction of householders with their present housing circumstances,
(High, Medium or Low, ordered factor).

Infl. Perceived degree of influence householders have on the management
of the property (High, Medium, Low).

Type. Type of rental accommodation, (Tower, Atrium, Apartment, Ter-
race).

Cont. Contact residents are afforded with other residents, (Low, High).

Freq. Frequencies: the numbers of residents in each class.

head(housing)

## Sat Infl Type Cont Freq

## 1 Low Low Tower Low 21
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## 2 Medium Low Tower Low 21

## 3 High Low Tower Low 28

## 4 Low Medium Tower Low 34

## 5 Medium Medium Tower Low 22

## 6 High Medium Tower Low 36

Regard Sat as the response and Infl, Type, and Cont as predictors. A
simple model: each individual has a fixed probability of ending up in each
response category,

pi,t,,c,s = P{Sat = s, Infl = i, Type = t, Cont = c}
= P{Infl = i, Type = t, Cont = c}×

P{Sat = s | Infl = i, Type = t, Cont = c}
= γitc × pi,t,c(s)

and individuals behave independently. For interpretation we are mostly
interested in the conditional probabilities pi,t,c(s).

For glm(), the quantities log(picts) are modelled as linear functions of
the predictors, which are estimated by maximum likelihood. That is, the
estimators are chosen to maximize the likelihood function

L1681 =
∏1681

α=1
piα,tα,cα(sα)γiα,tα,cα ,

where (sα, iα, tα, cα) are the observed levels of the factors for individual α.
Of course each piα,tα,cα(sα)γiα,tα,cα needs to be rewritten as functions of the
unknown parameters.

The housing data set does not give the individual responses. Luckily the
likelihood only depends on aggregated counts. If

Nitcs = Freq[Sat = s, Infl = i, Type = t, Cont = c]

denotes the number of individuals for which iα = i, tα = t, cα = c, sα = s
then

logL1681 =
∑

s,i,t,c
Nitcs (log pitc(s) + log γitc) .

With count data of this form it is common to model the sample size N =∑
i,t,c,sNitcs as random, with a Poisson(λ) distribution. That is,

P{N = n} = e−λ
λn

n!
for n = 0, 1, . . . .
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(For the housing data the observed N equals 1681.) Under this model
the Nitcs’s become independent Poisson random variables, with expected
values λpitcs(s). Fortunately, the log-likelihood when N = n is only slightly
different from logLn:

log-likelihood = −λ+ n log λ− log(n!) + Ln.

The p̂itcs’s under the Poisson model are the same as th p̂itcs’s that maxi-
mize Ln; and λ̂ = n. In short, the maximum likelihood fit is essentially
the same for the fixed N and random N models, which is the main rea-
son for the common choice family = poisson when fitting count data by
maximum likelihood.

Let me try to reproduce the analysis given by (Venables and Ripley,
2002, Section 7.3). First they fitted the model

log pitcs = θitc + δs.

hous0 <- glm(Freq ~ Infl*Type*Cont + Sat,

family = poisson, data = housing)

# for comparison with V\&R p200:

print(c(hous0$null.deviance,hous0$deviance, hous0$df.resid))

## [1] 833.657 217.456 46.000

plot(housing$Freq,resid(hous0))
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Don’t worry about the meaning of “deviance” for the moment. I included
it just to check that I was fitting the same model as V&R. Not a great fit.

Next they fitted the model

log pitcs = θitc + θsi + θst + θsc.

hous1 <- glm(Freq ~ Infl*Type*Cont + Sat:(Infl+Type+Cont),

family = poisson, data = housing)

# for comparison with V\&R p200:

print(c(hous1$null.deviance,hous1$deviance,hous1$df.resid))

## [1] 833.6570 38.6622 34.0000

plot(housing$Freq,resid(hous1))
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To conserve on space I’ll abbreviate the factor levels before displaying
the coefficients.

options(width=120)

is.Low <- grep("Low",housing$Sat)

Sat.matrix <- matrix(housing$Freq,byrow=T,ncol=3)

fit.matrix <- matrix(hous1$fit,byrow=T,ncol=3)

counts <- apply(Sat.matrix,1,sum)

satisfaction <- cbind(housing[is.Low,2:4],Sat.matrix,round(fit.matrix,1),

round(sweep(Sat.matrix,1,counts,"/"),2),round(sweep(fit.matrix,1,counts,"/"),2))

names(satisfaction)[4:15] <- paste(rep(c("L", "M", "H"),times=4),

rep(c("freq","est","prop","p.est"),each=3),sep=".")

levels(satisfaction$Type) <- c("Tw","Ap","At","Tr")
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levels(satisfaction$Infl) <- c("L","M","H")

levels(satisfaction$Cont) <- c("L","M")

print(satisfaction)

## Infl Type Cont L.freq M.freq H.freq L.est M.est H.est L.prop M.prop H.prop L.p.est M.p.est H.p.est

## 1 L Tw L 21 21 28 27.7 18.2 24.1 0.30 0.30 0.40 0.40 0.26 0.34

## 4 M Tw L 34 22 36 23.9 24.6 43.5 0.37 0.24 0.39 0.26 0.27 0.47

## 7 H Tw L 10 11 36 8.6 11.0 37.5 0.18 0.19 0.63 0.15 0.19 0.66

## 10 L Ap L 61 23 17 54.8 23.3 22.9 0.60 0.23 0.17 0.54 0.23 0.23

## 13 M Ap L 43 35 40 46.6 30.9 40.5 0.36 0.30 0.34 0.39 0.26 0.34

## 16 H Ap L 26 18 54 25.0 20.7 52.3 0.27 0.18 0.55 0.26 0.21 0.53

## 19 L At L 13 9 10 13.7 10.3 8.0 0.41 0.28 0.31 0.43 0.32 0.25

## 22 M At L 8 8 12 8.3 9.7 10.0 0.29 0.29 0.43 0.30 0.35 0.36

## 25 H At L 6 7 9 4.1 6.0 11.9 0.27 0.32 0.41 0.19 0.27 0.54

## 28 L Tr L 18 6 7 20.0 6.8 4.2 0.58 0.19 0.23 0.65 0.22 0.14

## 31 M Tr L 15 13 13 20.8 11.0 9.2 0.37 0.32 0.32 0.51 0.27 0.22

## 34 H Tr L 7 5 11 8.5 5.6 9.0 0.30 0.22 0.48 0.37 0.24 0.39

## 37 L Tw M 14 19 37 20.9 19.7 29.4 0.20 0.27 0.53 0.30 0.28 0.42

## 40 M Tw M 17 23 40 14.8 21.8 43.4 0.21 0.29 0.50 0.18 0.27 0.54

## 43 H Tw M 3 5 23 3.1 5.7 22.1 0.10 0.16 0.74 0.10 0.19 0.71

## 46 L Ap M 78 46 43 73.1 44.6 49.3 0.47 0.28 0.26 0.44 0.27 0.30

## 49 M Ap M 48 45 86 53.2 50.8 75.0 0.27 0.25 0.48 0.30 0.28 0.42

## 52 H Ap M 15 25 62 18.3 21.7 62.0 0.15 0.25 0.61 0.18 0.21 0.61

## 55 L At M 20 23 20 20.9 22.5 19.6 0.32 0.37 0.32 0.33 0.36 0.31

## 58 M At M 10 22 24 12.1 20.3 23.6 0.18 0.39 0.43 0.22 0.36 0.42

## 61 H At M 7 10 21 4.9 10.2 22.9 0.18 0.26 0.55 0.13 0.27 0.60

## 64 L Tr M 57 23 13 50.9 24.6 17.5 0.61 0.25 0.14 0.55 0.27 0.19

## 67 M Tr M 31 21 13 26.3 19.9 18.8 0.48 0.32 0.20 0.40 0.31 0.29

## 70 H Tr M 5 6 13 6.6 6.2 11.3 0.21 0.25 0.54 0.27 0.26 0.47

The last 12 columns of satisfaction denote

[HML].freq = observed counts

[HML].est = estimated counts

[HML].prop = observed proportions

[HML].p.est = estimated probabilities

Venables and Ripley (2002, page 202) commented:

The message of the fitted model is now clear. The factor having most effect on the

probabilities is influence, with an increase in influence reducing the probability of

low satisfaction and increasing that of high. The next most important factor is the

type of housing itself. Finally, as contact with other residents rises, the probability

of low satisfaction tends to fall and that of high to rise, but the effect is relatively

small. \\ The reader should compare the model-based probability estimates with the

relative frequencies from the original data. In a few cases the smoothing effect of

the model is perhaps a little larger than might have been anticipated, but there are

no very surprising differences.

Then V&R started to fiddle around with other slightly different models.
Did we learn anything new by fitting the hous1 model?
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2 Fitting

For general Poisson log-linear models we have counts yα, for α ∈ A ranging
over all the cells in the cross-tabulation for p factors. These yα’s are modelled
as independent Poisson(µα) random variables with logµα = θα = wTα b, for
a specified set of factor levels wα for cell α. If there are N cells in the table
then the linear predictor for the vector θ equals Xb, where X is the N × p
matrix with wTα as its αth row.

Remark. I have indexed the set of cells by A instead of the
usual {1, . . . , N} to avoid confusing myself when thinking of A as
the set of all combinations of levels for the factors.

We can think of the likelihood as a function of µ or of θ or, if θ = Xb,
as a function of b. Even though the last parametrization might seem the
most appropriate, it is worthwhile to consider values of θ that do not lie
in span(X). You will see soon the reason for this relaxation of the rules.
The log-likelihood equals

L(θ) =
∑

α
gα(θα)

where gα(θ) = log
(
e−µaµyαa /yα!

)
= yαθα − eθα − log(yα!).

Note that ga(t) has first and second derivatives (with respect to θα)

ġα(θα) = yα − eθα = yα − µa
g̈α(θα) = −eθα = −µa.

Consider the effect of making a (small?) change in θ. By Taylor expansion,

L(θ + h) =
∑
α

gα(θα + hα)

≈
∑

α

(
gα(θα) + hαġα(θα) + 1

2h
2
αg̈α(θα)

)
= L(θ) + 1

2

∑
α

(
hα(yα − µα)− 1

2h
2
αµα

)
= L(θ) + 1

2

∑
α
(yα − µα)2/µα − 1

2

∑
α
µα [(yα − µα)/µα − hα]2 .<1>

The last equality comes from completing the square. Define

η = θ + h

zα = zα(θ) = θα + (yα − µα)/µα

Q(µ) =
∑

α
(yα − µα)2/µα.
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Then the approximation can be rewritten as

<2> L(η) ≈ L(θ) + 1
2Q(µ)− 1

2

∑
α
µα (zα − ηα)2 .

This approximation suggests an algorithm for determining the b̂ that maxi-
mizes L(Xb) over b in Rp.

(i) Initialize by choosing µ equal to y, that is, θα = log yα.

(ii) Iterate until the θ “seems to have converged”:

(a) Define µα = exp(θα) and zα = θα + (yα − µα)/µα.

(b) Find b to minimize
∑

α µα (zα − ηα)2 where η = Xb.

(c) Redefine: θα = ηα.

It doesn’t matter that the θ for the initialization step (i) might not be
of the form Xb. We just have to take some precaution against cases where
some yα is zero. The derivation of <2> still makes some sense if we don’t
worry about h being small.

The minimization in step (ii) is a weighted least squares problem. If we
write M for diag(

√
µ
α

: α ∈ A) then the problem can be written as

find b to minimize (z −Xb)TM2(z −Xb) = ‖Mz −MXb‖22 .

Remark. R handles weighted least squares by using the func-
tion lm.wfit(). In the code for that function there are the lines

wts <- sqrt(w)

z <- .Call(C_Cdqrls, x * wts, y * wts, tol, FALSE)

That is, it uses the ordinary qr method after multiplying the response
and the predictors by the square root of the weights.

Somewhere in that function, or in glm(), R must be adding in the
intercept term.

3 Generalized linear models

I was going to point out that the log-linear Poisson model fits into the gen-
eralized framework described by (McCullagh and Nelder, 1989, Section 2.5).
Instead let me point you to an old handout, GLM2010.pdf.
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4 Deviance and measures of fit

The housing data set contains counts of numbers of individuals (Freq) for
each of the combinations of the four factors. The models led to estimated
counts. We need some measure of how close these two sets of counts are to
each other.

plot(housing$Freq,fitted(hous1))
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Remember that

logL(θ) =
∑

α∈A

(
yαθα − eθα − log(yα!)

)
There are several common ways to measure how close the fitted values are
to the data. Suppose θ̂ maximizes L(θ) subject to the constraint that θ̂ ∈
span(X). That is, θ̂ = Xb̂ for the b̂ that maximizes L(Xb). If there were
no constraint on the θ then elementary calculus shows that the maximum is
achieved at θ∗α = log yα. The quantity

DX = 2L(θ∗)− 2L(θ̂)

is called the deviance for the model.
More classical is the chi-squared statistic∑

α
(yα − µ̂α)2/µ̂α where µ̂α = eθ̂α
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or its modified form∑
α
(yα − µ̂α)2/yα.

The last two statistics are closely related to the squared distance between
square roots,∑

α

(√
yα −

√
µ̂a

)2
=
∑

α

(yα − µ̂a)2(√
y
α

+
√
µ̂a

)2 ,
which is suggested by the fact that

√
yα is approximately N(

√
λα, 1/4) dis-

tributed if yα ∼ Poisson(λα).
In an asymptotic sense all of these measures of fit are capturing the same

idea.

4.1 Asymptotics

Suppose the yα’s are actually independent, with yα ∼ Poisson(λα) and
log λα = wTαβ for some unknown β in Rp. Define mα =

√
λα and ξα =

(yα − λα)/mα and M = diag(mα : α ∈ A). Then approximation <1> can
be rewritten as

L(Xβ + h) ≈ L(Xβ) + 1
2

∑
α

(
hα(yα − λα)− 1

2h
2
αλα

)
= L(Xβ) + 1

2

∑
α
ξ2α − 1

2

∑
α
(ξα −mαhα)2.

For a general b in Rp define t = b− β and h = Xb−Xβ. Then the last
approximation becomes

L(Xb) = L(Xβ + h) ≈ L(Xβ) + 1
2 ‖ξ‖

2 − 1
2 ‖ξ −MXt‖2 .

The b̂ that maximizes the left-hand side corresponds (approximately) to
the t̂ that minimizes ‖ξ −MXt‖2.

Once again we have a least squares problem. If H denotes the matrix
that projects orthogonally onto span(MX) then

L(Xb̂) ≈ L(Xβ) + 1
2 ‖(I −H)ξ‖2 .

By the central limit theorem the vector ξ is approximatelyN(0, IN )-distributed.
The term ‖(I −H)ξ‖2 is approximately χ2-distributed.

If I were to pursue this idea further you would see how other goodness-
of-fit quantities involve terms that are approximately χ2-distributed, which
leads to (approximate) ways to compare the fits for various models.
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5 Structural zeros

Read McCullagh and Nelder (1989, Section 3.7).
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