
Statistics 312/612, fall 2016
Homework # 9
Due: Wednesday 16 November

[1] Suppose A is a k × n matrix of rank m, with svd

A = UDV T =
∑

i≤m
diuiv

T
i .

Remember that {ui : i ∈ [k]} is an onb for Rk and {vj : j ∈ [n]} is an onb for Rn.
Suppose we are given some vector z in Rk that is known to belong to the column space
of A, that is, z = AF for some given F in Rn. Suppose we want to represent z as
AATG for some G in Rk (cf. Tibshirani, 2013, page 1461).

(i) (10 points) Show that the general solution to AF = AATG is

G = UD−1V TF + g with g ∈ {w ∈ Rk : AT g = 0}.

(ii) (10 points) If m = k, explain why AAT is non-singular, so that G = (AAT )−1AF is
the unique solution.

[2] Suppose f is a real-valued function on Rk defined by f(z) =
∑
i∈[k] ψi(zi), where

z = (z1, . . . , zk) and each ψj is a convex function on the real line.

(i) (5 points) Show that f is convex.

(ii) (5 points) If each ψj is strictly convex, show that f is also strictly convex.

(iii) (extra credit) For each α > 1 show that the function ψ(t) = |t|α is strictly convex on
the real line. Hint: Show that ψ is differentiable with strictly increasing derivative.

[3] Suppose y ∈ Rn and X = (x1, . . . , xp) is an n × p matrix whose columns are unit
vectors: ‖xj‖2 = 1 for each j. For a fixed λ > 0 define

G(b) = Gλ(b) = Q(b) + λ ‖b‖1 where Q(b) = 1
2
‖y −Xb‖22 .

The directional derivative at b of G in the direction u is defined as

DG(b, u) = lim
t↓0

(f(b+ tu)− f(b)) /t.

Convexity ensures that a vector b̂ minimizes G if and only if DG(̂b, u) ≥ 0 for every
direction u.

(i) (10 points) Show that

Q(̂b+ tu)−Q(̂b) = −t〈y −Xb,Xu〉+ o(|t|) as t→ 0.

Deduce that Q has directional derivative

DQ(̂b, u) = −
∑

j∈[p]
ujx

T
j (y −Xb̂).

(ii) (10 points) Remember that the convex function ψ(t) = |t| on the real line has right-
and left-derivatives

R(t) = 1{t ≥ 0} − 1{t < 0} = sgn(t) + 1{t = 0}
L(t) = 1{t > 0} − 1{t ≤ 0} = sgn(t)− 1{t = 0}

where

sgn(t) = 1{t > 0} − 1{t < 0} =

{
+1 if t > 0
0 if t = 0
−1 if t < 0

.

Explain why

ψ(̂bj + tuj)−ψ(̂bj) = tuj
(
R(̂bj)1{uj > 0}+ L(̂bj)1{uj < 0}

)
+o(|t|) as t→ 0.

Deduce that the function h(b) = ‖b‖1 has directional derivatives

Dh(̂b, u) =
∑

j∈[p]
uj
(
R(̂bj)1{uj > 0}+ L(̂bj)1{uj < 0}

)
.



(iii) (5 points) Explain why b̂ minimizes G if and only if∑
j∈[p]

uj
(
λR(̂bj)1{uj > 0}+ λL(̂bj)1{uj < 0} − xTj (y −Xb̂)

)
≥ 0 for every u.

(iv) (5 points) Explain why b̂ minimizes G if and only if the following inequalities hold for
every j:

λR(̂bj)− xTj (y −Xb̂) ≥ 0

−λL(̂bj) + xTj (y −Xb̂) ≥ 0

(v) (10 points) Explain why b̂ minimizes G if and only if

xTj (y −Xb̂) = λ for all j where b̂j > 0

xTj (y −Xb̂) = −λ for all j where b̂j < 0

|xTj (y −Xb̂)| ≤ λ for all j where b̂j = 0

[4] Use the same notation as in Problem [2]. For each λ ≥ 0 suppose b̂(λ) minimizes Gλ.

Define m(λ) = Gλ(̂b(λ)) and q(λ) = Q(̂b(λ)) and `(λ) =
∥∥∥b̂(λ)

∥∥∥
1
. Consider any pair

of λ values: 0 ≤ λ1 < λ2. Abbreviate b̂(λi) to ai and define δ = λ2 − λ1.

(i) (10 points) Explain why

m(λ1) = Gλ1(a1) ≤ Gλ1(a2) ≤ Gλ2(a2) = m(λ2).

That is, explain why m(λ) increases as λ increases.

(ii) (10 points) Explain why

Q(a1) + λ1 ‖a1‖1 ≤ Q(a2) + λ1 ‖a2‖1
Q(a2) + λ2 ‖a2‖1 ≤ Q(a1) + λ2 ‖a1‖1 .

Deduce that ‖a2‖1 ≤ ‖a1‖1. That is, `(λ) decreases as λ increases. Hint: Add.

(iii) (10 points) Explain why Q(λ) increases as λ increases.

(iv) (extra credit) Use the diabetes data from the LARS paper (in R: data(diabetes) )
and the output from out <- lars(db$x,db$y,type="lasso") to draw plots of m(λ),
q(λ), and `(λ) versus λ. Show your code.
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