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1.1 Minimimize sums of squares

The least squares method was first proposed in the early years of the 19th
century (or maybe earlier—Stigler, 1986, Chapter 1). Statistician often think
of it as just a way to fit a statistical model, even though it makes sense
without any mention of randomness or a model.

As a problem in computation, least squares starts from y = [y1, . . . , yn], a
column vector of numbers (an element of Rn), and some finite set of “predic-
tors”, column vectors xj = [x1j, . . . , xnj] for j = 1, . . . , p. We seek numbers
b1, . . . , bp to minimize the sum of squared differences:∑

i≤n

(
yi −

∑
j≤p

xijbj

)2
.

If we write ‖z‖ =
√

z21 + · · ·+ z2n for the length of a vector z = [z1, . . . , zn]
in Rn, then the task can be reexpressed as:

minimize ‖y − x1b1 − · · · − xpbp‖2 with respect to b. (1.1)
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That is, we seek a linear combination of the vectors x1, . . . , xp that best
approximates y, in the sense of minimizing the usual Euclidean distance.
More compactly, we can take the xj’s as the columns of an n × p matrix
and think of b = [b1, . . . , bp] as a vector in Rp, then minimize ‖y −Xb‖2.
We could also think of y1, . . . , yn as measurements on each of n individuals
and regard the ith row, w′i, of X as providing auxiliary information about
individual i, then minimize

∑
i≤n (yi − w′ib)

2.

Remark. If the last paragraph gave you a headache then you might
want to look at the first two chapters of the Axler (2015) book. It
is pretty painful trying to learn about linear models if one does not
know any linear algebra.

It is not hard to find a set of linear equations for b whose solution achieves
the minimum. The solution is not unique unless the vectors x1, . . . , xp are
linearly independent, that is, if none of them can be written as a linear
combination of the others (cf. Axler, 2015, Section 2A). In some simple
cases it is possible to write out, without recourse to matrices, a closed form
expression for the solution. It used to be a popular source of pleasure for
statistical sadists to make students memorize that expression, despite the fact
that computers are much better than humans at memorizing and applying
formulas.

Using R it is particularly easy to find least squares solutions. Here is a
fake example:

set.seed(0) # gardening time

xx <- matrix(1:20,ncol=2) # Create a 10 by 2 matrix

xx[1:3,] # first three rows of xx

## [,1] [,2]

## [1,] 1 11

## [2,] 2 12

## [3,] 3 13

# The columns of xx are known as xx[,1] and xx[,2] to R.

yy <- rnorm(10) # just noise

Now solve.

out1 <- lm(yy ~ -1 + xx) # solve the least squares problem,

# putting lots of info into a new object

names(out1) # lots of good stuff in here
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## [1] "coefficients" "residuals" "effects" "rank"

## [5] "fitted.values" "assign" "qr" "df.residual"

## [9] "xlevels" "call" "terms" "model"

# For example,

out1$coefficients

## xx1 xx2

## -0.07498644 0.04976448

# too many decimal places

In this case the minimizing value of b is b̂ = [−0.07, 0.05].

Remark. The −1 in the lm() stops R from trying to be helpful by
adding a vector of 1’s as a third column to X, even though it is often
a good idea. (It adds an intercept term to a regression.) If you want
to see the effect, try:

# summary(lm(yy ~ -1 + xx))

# summary(lm(yy ~ xx))

without the comment characters (#) at the start of the lines. You will
see that R has included an intercept term, by adding a column of 1’s
to the X matrix, in the second case. Don’t worry about the details.
You’ll learn in a week or so what it all means.

Usually it is better to keep all the data together in one object, a “data
frame”:

mydata <- data.frame(y=yy,xx)

mydata[1:3,]

## y X1 X2

## 1 1.2629543 1 11

## 2 -0.3262334 2 12

## 3 1.3297993 3 13

out2 <- lm(y ~ -1 + X1 + X2, data=mydata)

# out2 <- lm(y ~ -1 + . , data=mydata) does the same thing

round(out2$coeff,4)

## X1 X2

## -0.0750 0.0498
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1.2 Geometry

The vectors x1, . . . , xp span some subspace X of Rn. (That is, the set of
all vectors of the form x1b1 + . . . xpbp is a vector subspace of Rn). The
least squares method minimizes ‖y − x‖ as x runs through all vectors in X.
The minimimizing vector in X is often denoted by ŷ. It is sometimes called
the fitted vector. As you will see, it is easy to find ŷ if we work in a
good coordinate system. We then have the task of writing ŷ as a linear
combination b̂1x1 + · · · + b̂pxp, which also turns out to be easy if we choose
a good coordinate system.

If the xj’s are linearly independent (Axler, 2015, Section 2.17) then the
subspace X has dimension p (and X has rank p; the matrix is of full
rank). If at least one of the xj’s is a linear combination of some of the
others then X has a dimension smaller than p (and X is not of full rank).

Remark. There are many linear models for which it makes sense to
choose linearly dependent xj ’s. Stay tuned for ANOVA.

Axler (2015, Chapter 6) would come in handy if the next paragraph
intimidates you.

Remember that Rn can be equipped with an inner product (also known
as a dot product). For column vectors u = [u1, . . . , un] and v = [v1, . . . , vn],

〈u, v〉 = u · v = u′v =
∑

i≤n
uivi.

In particular, ‖u‖ =
√
〈u, u〉 . A vector u is said to be a unit vector if ‖u‖ = 1.

Two vectors, u and v, are said to be orthogonal if 〈u, v〉 = 0. A set of vectors
{q1, . . . , qm} is said to be an orthonormal basis for a subspace X if:

(i) Each qi is a unit vector and 〈qi, qj〉 = 0 for all i 6= j.

(ii) Each vector x in can be written as a linear combination of q1, . . . , qm.

The second property means that, for each x in X there exist numbers
t1, . . . , tm such that

x = q1t1 + · · ·+ qmtm

The coefficients tj are determined by

〈x, qj〉 = 〈q1t1+ · · ·+qmtm, qj〉 = t1〈q1, qj〉+ · · ·+tj〈qj, qj〉+ · · ·+tn〈qn, qj〉.
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In the last sum, 〈qj, qj〉 = 1 (because qj is a unit vector) and the other inner
products are zero (by orthogonality). Thus tj = 〈x, qj〉.

The key fact is:

For each subspace X of Rn of dimension m there exists an orthonormal
basis {qj : 1 ≤ j ≤ n} (not unique) for Rn, such that q1, . . . , qm is an
orthonormal basis for X. The remaining vectors, qm+1, . . . , qn provide
an orthonormal basis for the subspace

X⊥ = {z ∈ Rn : 〈x, z〉 = 0 for all x in X},

the orthogonal complement of X.

It is a trivial task to find ŷ if y and x are expressed in this orthonormal
basis.

y = s1q1 + . . . smqm + (sm+1qm+1 + . . . snqn) (1.2)

x = t1q1 + . . . tmqm

‖y − x‖2 = (s1 − t1)
2 + · · ·+ (s1 − t1)

2 +
(
s2m+1 + · · ·+ s2n

)
Clearly the solution is given by ti = si for 1 ≤ i ≤ m. The fitted vector ŷ
equals s1q1 + . . . smqm. The residual vector is defined as r = y − ŷ =
sm+1qm+1 + . . . snqn, an element of X⊥. The fitted vector and the residual
vector are orthogonal. The decomposition y = ŷ + r is the unique represen-
tation of y as a sum of a vector in X and a vector in X⊥. The fitted vector
is also called the orthogonal projection of y onto X and the residual is
called the projection of y orthogonal to X (or the orthogonal projection of y
onto X⊥).

<1.3> Example. Most introductory courses discuss the problem of fitting a straight
line by least squares: We have vectors y and z = [z1, . . . , zn] in Rn; we seek
constants c and d to minimize

∑
i≤n(yi − c− dzi)

2.

The problem fits into the framework of (1.1) with x1 = 1, a column of 1’s,
and x2 = z—that is, X = (1, z)—and b equal to the column vector [c, d].

For the qi’s choose q1 as a unit vector in the direction of x1 and q2 as a
unit vector in the direction of x2−〈x2, q1〉q1, which is orthogonal to q1. Note
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that 〈x2, q1〉 = n−1/2
∑

i zi = z
√
n , so that

q1 = n−1/21

q2 =
x2 − 〈x2, q1〉q1
‖x2 − 〈x2, q1〉q1‖

=
z − z1

`
where ` :=

√∑
i
(zi − z)2 .

We do not need to determine q3, . . . , qn explicitly in order to determine the
least squares fit. Indeed, with

s1 = 〈y, q1〉 = n1/2y and s2 = 〈y, q2〉 =
∑

i
yi(zi − z)/`

we have

ŷ = s1q1 + s2q2 = ĉ1 + d̂z

where d̂ =

∑
i yi(zi − z)∑
i(zi − z)2

and ĉ = y − d̂z.

Remark. Obviously something goes wrong if
∑

i(zi − z)2 = 0. That
happens only when z is a constant multiple of 1, which means that z
and 1 are linearly dependent and the coefficients c and d are not
uniquely determined. Put another way, the rank of the matrix X
and the dimension of the subspace X both equal 1. For uniquely
determined c and d we need the rank and the dimension equal to 2.

In matrix notation, provided z is not a constant multiple of 1,

Q = (q1, q2) = (1, z)W = XW (1.4)

where W =

(
w11 w12

0 w22

)
:=

(
n−1/2 −z/`

0 1/`

)
.

The zero in the south-west corner makes it easy to find the inverse matrix R =
W−1. We want(

1 0
0 1

)
= WR =

(
w11r11 + w12r21 w11r12 + w12r22

w22r21 w22r22

)
.

with solution

r22 = 1/w22 = `

r21 = 0/w22 = 0

r11 = (1− 0)/w11 = n1/2

r12 = −w12r22/w11 = n1/2z.
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That is

R =

(
n1/2 n1/2z

0 `

)
and X = XWW−1 = QR.

Remark. If I had started with a much larger upper triangular
matrix, a square matrix with zeros everywhere below the diagonal,
you would have seen clearly the pattern that gives the method the
name back-substitution (Golub and Van Loan, 2013, Section 3.1).
R knows how to back-substitute; you do not have to go through the
calculations.

The least squares calculations can be rewritten as

QRb̂ = Xb̂ = ŷ = 〈y, q1〉q1 + 〈y, q2〉q2 = QQ′y,

so that b̂ = R−1Q′y. (Orthonormality gives Q′Q = I2.) The n×n matrix H =
QQ′ is often called the hat matrix. (Where do you think that name came
from?) It is the matrix for orthogonal projection onto the X subspace. Also

b̂ = R−1Q′y = (R′R)−1(QR)′y = (X ′X)−1X ′y.

The last equality gives the traditional textbook solution to the “normal equa-
tions”, X ′(y − Xb̂) = r′ŷ = 0. Unfortunately this solution makes no sense
when X is not of full rank. (The matrix R would be singular, that is neither R
nor X ′X has an inverse.)

�

1.3 QR decompositions and least squares

The method described in Example 1.3 works more generally. For n ≥ p,
every n × p matrix X = (x1, . . . , xp) can be written in the form X = QR,
where Q = (q1, . . . , qp) is an n× p matrix whose columns are orthogonal unit
vectors and R is a p × p upper triangular matrix (the elements below the
diagonal are all zero):

R =


r11 r12 r13 . . . r1p
0 r22 r23 . . . r2p
0 0 r33 . . . r3p
...
0 0 0 . . . rpp


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That is,

x1 = q1r11

x2 = q1r12 + q2r22
... (1.5)

xp = q1r1p + q2r2p + · · ·+ qprpp (1.6)

Such a representation could be constructed by an analog of the procedure
in Example 1.3 (the Gram-Schmidt procedure) or, as R does, by an elegant
method using Householder reflections (Dongarra et al., 1993, page 9.13).

The diagonal elements rjj for 1 ≤ j ≤ p are all nonzero if and only if the
matrix X has full rank. In that case, the qj’s can all be expressed (uniquely)
as linear combinations of the xj’s and {q1, . . . , qp} is an orthonormal basis
for X.

When X is not of full rank, R can still make a least squares fit, but you
need to be careful in interpreting the output. Here is an example where I
ensure complications by deliberately making the third column of X a linear
combination of two other columns, then R makes things even worse (so to
speak) by adding in a column of ones.

mydata3 <- data.frame(y=yy,

x1=1:10,x2= 11:20, x3= 0.5*(1:10)-3*(11:20))

out3 <- lm(y ~ ., data=mydata3)

summary(out3)

##

## Call:

## lm(formula = y ~ ., data = mydata3)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.8863 -0.7277 -0.1167 0.8544 2.1592

##

## Coefficients: (2 not defined because of singularities)

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.49764 0.87159 0.571 0.584

## x1 -0.02522 0.14047 -0.180 0.862

## x2 NA NA NA NA

## x3 NA NA NA NA
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##

## Residual standard error: 1.276 on 8 degrees of freedom

## Multiple R-squared: 0.004014,Adjusted R-squared: -0.1205

## F-statistic: 0.03224 on 1 and 8 DF, p-value: 0.862

What happened? R figured out that (within some level of numerical
accuracy): x2 and x3 are linear combinations of 1 and x1; the matrix X =
(1, x1, x2, x3) has rank 2; the subspace X has dimension 2, not 4; R only needs
two orthogonal unit vectors to span X; but it still gave you four orthogonal
unit vectors because it thought that’s what you wanted.

out3$rank

## [1] 2

round(qr.R(out3$qr),2) # notice the zeros on the diagonal

## (Intercept) x1 x2 x3

## 1 -3.16 -17.39 -49.02 138.35

## 2 0.00 9.08 9.08 -22.71

## 3 0.00 0.00 0.00 0.00

## 4 0.00 0.00 0.00 0.00

Q1 <- qr.Q(out3$qr)

round(Q1,2)[1:2,]

## [,1] [,2] [,3] [,4]

## [1,] -0.32 -0.50 -0.34 -0.32

## [2,] -0.32 -0.39 -0.24 -0.12

Q2 <- Q1[,1:2] # just the first two columns, 10 by 2

HAT <- Q2 %*% t(Q2) # a 10 by 10 matrix

round(HAT[1:2,],2)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] 0.35 0.29 0.24 0.18 0.13 0.07 0.02 -0.04 -0.09 -0.15

## [2,] 0.29 0.25 0.21 0.16 0.12 0.08 0.04 -0.01 -0.05 -0.09

thefit <- HAT %*% mydata3$y # a 10 by 1 matrix

round( rbind(t(HAT %*% mydata3$y),out3$fit) ,3)

## 1 2 3 4 5 6 7 8 9 10

## [1,] 0.472 0.447 0.422 0.397 0.372 0.346 0.321 0.296 0.271 0.245

## [2,] 0.472 0.447 0.422 0.397 0.372 0.346 0.321 0.296 0.271 0.245

The hat matrix H = Q2Q
′
2 is symmetric and HH = Q2Q

′
2Q2Q

′
2 = H. It

projects vectors in R10 onto the two-dimensional subspace X spanned by the
columns of X or by the first two columns of the Q matrix. In fact, R would
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be just as happy to give a complete orthonormal basis for R10:

Q3 <- qr.Q(out3$qr,complete=T)

round(Q1,2)[1:3,]

## [,1] [,2] [,3] [,4]

## [1,] -0.32 -0.50 -0.34 -0.32

## [2,] -0.32 -0.39 -0.24 -0.12

## [3,] -0.32 -0.28 0.90 -0.08

round(Q3,2)[1:3,]

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] -0.32 -0.50 -0.34 -0.32 -0.31 -0.29 -0.28 -0.26 -0.24 -0.23

## [2,] -0.32 -0.39 -0.24 -0.12 -0.01 0.10 0.22 0.33 0.45 0.56

## [3,] -0.32 -0.28 0.90 -0.08 -0.07 -0.05 -0.03 -0.01 0.00 0.02
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