Chapter 4

Over-parametrized models

1 Rank, subspaces, and bases

Once more suppose $X = (x_1, \ldots, x_p)$ is an $n \times p$ matrix of rank m, with m < p. That is, the space \mathfrak{X} spanned by all the columns of X can also be spanned by some subset of m linearly independent columns. The space \mathfrak{X} is **over-parametrized**; we don't need all p parameters to specify vectors in \mathfrak{X} , because there is a set of m linearly independent columns that spans \mathfrak{X} . For each z in \mathfrak{X} there are many different b in \mathbb{R}^p for which z = Xb. The non-uniqueness of b leads to several difficulties when the columns of X are used as the predictors in a least squares problem.

The $p \times n$ matrix $X^T = (w_1, \ldots, w_n)$ also has rank m (Axler, 2015, pages 111–112). The subspace W of \mathbb{R}^p spanned by all the columns of X^T can also be spanned by some subset of m linearly independent columns, which (without loss of generality) we may suppose correspond to the first m rows of X. Put another way,

$$X^T = p \begin{bmatrix} m & p-m \\ W_1 & W_2 \end{bmatrix}$$

where the linearly independent columns of W_1 form a basis for \mathcal{W} and $W_2 = W_1 A$ for some $m \times (p - m)$ matrix A.

A vector z in \mathbb{R}^n belongs to \mathfrak{X} if and only if it can be written as Xb for some b in \mathbb{R}^p . If we partition z into a vector z_1 of length m and a vector z_2 of length n - m then

$$Xb = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$
 if and only if $z_1 = W_1^T b$ and $z_2 = W_2^T b = A^T z_1$.

version: 21 Sept 2016 printed: 21 September 2016 Stat 312/612 ©David Pollard Stat 312/612

That is, if $z \in \mathcal{X}$ then $z_2 = A^T z_1$ and Xb = z if and only if $W_1^T b = z_1$. Write b_z for the orthogonal projection of b onto \mathcal{W} , so that $w = b - b_z \in \mathcal{W}^{\perp}$. The vector b_z is the unique member of \mathcal{W} for which $W_1^T b_z = z_1$; it is the same for every solution of $W_1^T b = z_1$. The *w* could be anything in \mathcal{W}^{\perp} . In summary: if $z \in \mathcal{X}$ there is a unique b_z in \mathcal{W} for which $W_1^T b_z = z_1$ and

$$<4.1>\qquad\qquad \mathcal{B}_z=\{b\in\mathbb{R}^p:Xb=$$

 $=z\} = \{b_z + w : w \in \mathcal{W}^{\perp}\}.$

The solution set could also be characterized using the svd. The singular value decomposition of X is given by an $n \times n$ orthogonal matrix U and a $p \times p$ orthogonal matrix V, and nonzero singular values $\lambda_1, \ldots, \lambda_m$. If we partition U and V as

$$U = n \quad \begin{bmatrix} m & n-m & & m & p-m \\ U_1 & U_2 \end{bmatrix} \quad \text{AND} \quad V = p \quad \begin{bmatrix} V_1 & V_2 \end{bmatrix}$$

then $X = U_1 \Lambda_1 V_1^T$, where $\Lambda_1 = \text{diag}(\lambda_1, \dots, \lambda_m)$, a nonsingular $m \times m$ matrix with inverse $\Lambda_1^{-1} = \text{diag}(\lambda_1^{-1}, \dots, \lambda_m^{-1})$. The columns of U_1 provide an orthonormal basis (onb) for \mathfrak{X} ; the columns of U_2 provide an onb for \mathfrak{X}^{\perp} ; the columns of V_1 provide an onb for \mathcal{W} ; and the columns of V_2 provide an onb for \mathcal{W}^{\perp} .

$\mathbf{2}$ A bad thing about non-uniqueness

In statistical applications, we often think of y as a random vector whose expected value $\mu = \mathbb{E}y$ is modelled as an unknown element of the subspace \mathfrak{X} of \mathbb{R}^n spanned by the columns of a given matrix X. By assumption, the unknown μ can be written as $X\beta$ for some unknown β in \mathbb{R}^p . The fitted vector \hat{y} is then thought of as an estimator for the unknown μ and the b for which $\hat{y} = Xb$ is thought of as an estimator for β . Non-uniqueness of b (or of β itself) clearly causes some embarrassment. How can we interpret quantities that are not uniquely determined?

Statisticians use two general strategies for avoiding this embarrassment.

- (i) Restrict attention to linear functions $L^T\beta$ (with $L \in \mathbb{R}^p$) of the unknown β that are uniquely determined by μ . That is, only interpret the linear combinations for which there exists some vector ℓ in \mathbb{R}^n such that $L^T \beta = \ell^T \mu$ whenever $\mu = X\beta$. Such linear combinations are said to be *estimable*.
- (ii) Impose a set of p-m linearly independent linear constraints on b, say $D_1^T b = 0$ for fixed $p \times (p - m)$ matrix D_1 , so that to every $z \in \mathfrak{X}$ there exists a unique b in \mathbb{R}^p for which both z = Xb and $D_1^T b = 0$.

Draft: 21 Sept 2016 ©David Pollard

Stat 312/612

3 Estimable functions

If $L \in \mathcal{W}$ then it can be written as a linear combination of the columns of X^T , that is, $L = X^T \ell$ for some ℓ in \mathbb{R}^n . If Xb = z then

 $L^T b = \ell^T X b = \ell^T z.$

In particular, if $X\beta = \mu \in \mathcal{X}$ then $L^T\beta = \ell^T\mu$. That is, $L^T\beta$ is an estimable function.

Conversely, suppose that $L = L_1 + L_2$ with $L_1 \in \mathcal{W}$ and $L_2 \in \mathcal{W}^{\perp}$ and $b = b_Z + w \in \mathcal{B}_z$, as in <4.1>. Then

$$L^T b = L_1^T b_z + L_2^T w.$$

If $L_2 \neq 0$ then we can generate many different $L^T b$ values by varying w. For example, try w = 0 then $w = L_2$.

In short, the estimable functions $L^T\beta$ of the unknown parameters are precisely those for which $L \in \mathcal{W}$, that is, $L = X^T \ell$ for some ℓ is \mathbb{R}^n . In that case, $L^T \hat{b} = \ell^T X \hat{b} = \ell^T \hat{y}$ for every solution \hat{b} of the equation $X \hat{b} = \hat{y}$. Under the linear model where $y = \mu + \xi$ with $\mathbb{E}y = \mu \in \mathcal{X}$ and $\operatorname{var}(\xi) = \sigma^2 I_n$ we have

$$\mathbb{E}L^T \widehat{b} = L^T \beta$$
 and $\operatorname{var}\left(L^T \widehat{b}\right) = \sigma^2 \|\ell\|^2$

Remark. There is a role for estimability if we start with an X of full rank but lose some of the data. When the corresponding rows are removed from X we might be left with a reduced model matrix that is not of full rank.

4 Linear constraints

Suppose we constrain the parametrization by adding p - m more rows to the X matrix, in such a way that the augmented matrix

$$\widetilde{X} = {n \atop p-m} \begin{bmatrix} p \\ X \\ D_1^T \end{bmatrix} = {m \atop p-m} \begin{bmatrix} W_1^T \\ W_2^T \\ D_1^T \end{bmatrix}$$

has rank p. The columns of \widetilde{X}^T span \mathbb{R}^p . The columns of the $p \times p$ matrix $M^T = [W_1, D_1]$ span the same space. Thus M has rank p; it is nonsingular. For each z in \mathfrak{X} there is now a unique b in \mathbb{R}^p for which Xb = z

Draft: 21 Sept 2016 © David Pollard

Stat 312/612

and $D_1^T b = 0$:

$$\widetilde{X}b = {n \atop p-m} \left[\begin{array}{c} 1 \\ z \\ 0 \end{array} \right] \text{ iff } \begin{pmatrix} W_1^T \\ D_1^T \end{pmatrix} b = \begin{pmatrix} z_1 \\ 0 \end{pmatrix} \text{ iff } b = M^{-1} \begin{pmatrix} z_1 \\ 0 \end{pmatrix}.$$

Here is another way to derive the solution. It corresponds to the way \mathbf{R} actually handles the over-parametrization problem for factors. The linearly independent columns of D_1 span a (p-m)-dimensional subspace \mathcal{D} of \mathbb{R}^p . Find a $p \times m$ matrix D_2 whose columns span \mathcal{D}^{\perp} , the *m*-dimensional subspace of all vectors in \mathbb{R}^p that are orthogonal to \mathcal{D} . The requirement $D_1^T b = 0$ means that b should be orthogonal to \mathcal{D} . That is, $d = D_2 a$ for some a in \mathbb{R}^m . The second requirement then becomes $XD_2a = z$. We now have a new parametrization for the model with the $n \times m$ model matrix XD_2 and parameters $a \in \mathbb{R}^m$. The equation $XD_2a = z$ has a unique solution for each z in \mathfrak{X} .

<4.2> **Example.** Suppose observations y_1, y_2, \ldots, y_9 are each identified as coming from one of three groups by means of a factor variable G with levels "A", "B", and "C":

G = [A, A, A, B, B, B, C, C, C].

The **R** command lm(y ~ G) would, conceptually, create a 9×4 model matrix X with columns $(1, G_A, G_B, G_C)$, where G_A has ones in the first three positions and zeros in the remaining six positions. More succinctly, G_A is the indicator function that takes the value 1 when the item comes from group A and zero otherwise. And so on. The least squares problem seeks b_0, b_A, b_B, b_C to minimize

 $||y - b_0 \mathbb{1} - b_A G_A - b_B G_B - b_C G_C||^2$.

The matrix X has rank 3, because $\mathbb{1} = G_A + G_B + G_C$. The minimizing b_i 's are not unique.

We could make the solution unique by eliminating the intercept term, that is, by putting $b_0 = 0$. We could also set one of the other b_i 's to zero (treatment contrasts). We could also constrain $b_A + b_B + b_C = 0$ (sum contrasts or Helmert contrasts).

The last three of these alternatives correspond to working with a model matrix of the form $(\mathbb{1}, \mathbb{G}D_2)$, where $\mathbb{G} = (G_A, G_B, G_C)$ and D_2 is one of the following three types of matrix:

Draft: 21 Sept 2016 © David Pollard

```
Stat 312/612
> contr.sum(3)
  [,1] [,2]
     1
           0
1
2
     0
           1
3
    -1
          -1
> contr.treatment(3)
  23
1 0 0
2 1 0
301
> contr.helmert(3)
  [,1] [,2]
    -1
          -1
1
     1
2
          -1
     0
3
           2
```

For details consult Chambers and Hastie (1992, Chapter 2) and Venables and Ripley (2002, Section 6.2). I'll also be creating a new handout to show how the interpretation of the summary output is affected by the different choices of constraint.

References

- Axler, S. J. (2015). Linear Algebra Done Right (Third ed.). Undergraduate Texts in Mathematics. Springer.
- Chambers, J. M. and T. J. Hastie (Eds.) (1992). *Statistical Models in S.* Wadsworth.

Venables, W. N. and B. D. Ripley (2002). *Modern Applied Statistics with S* (4th ed.). Springer-Verlag.