
Chapter 4

Over-parametrized models

1 Rank, subspaces, and bases

Once more suppose X = (x1, . . . , xp) is an n × p matrix of rank m, with
m < p. That is, the space X spanned by all the columns of X can also be
spanned by some subset of m linearly independent columns. The space X

is over-parametrized; we don’t need all p parameters to specify vectors
in X, because there is a set of m linearly independent columns that spans X.
For each z in X there are many different b in Rp for which z = Xb. The
non-uniqueness of b leads to several difficulties when the columns of X are
used as the predictors in a least squares problem.

The p × n matrix XT = (w1, . . . , wn) also has rank m (Axler, 2015,
pages 111–112). The subspace W of Rp spanned by all the columns of XT

can also be spanned by some subset of m linearly independent columns,
which (without loss of generality) we may suppose correspond to the first m
rows of X. Put another way,

XT =
[ m p−m

p W1 W2

]
where the linearly independent columns of W1 form a basis for W and W2 =
W1A for some m× (p−m) matrix A.

A vector z in Rn belongs to X if and only if it can be written as Xb for
some b in Rp. If we partition z into a vector z1 of length m and a vector z2
of length n−m then

Xb =

(
z1
z2

)
if and only if z1 = W T

1 b and z2 = W T
2 b = AT z1.
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That is, if z ∈ X then z2 = AT z1 and Xb = z if and only if W T
1 b = z1.

Write bz for the orthogonal projection of b onto W, so that w = b−bz ∈W⊥.
The vector bz is the unique member of W for which W T

1 bz = z1; it is the
same for every solution of W T

1 b = z1. The w could be anything in W⊥. In
summary: if z ∈ X there is a unique bz in W for which W T

1 bz = z1 and

<4.1> Bz = {b ∈ Rp : Xb = z} = {bz + w : w ∈W⊥}.

The solution set could also be characterized using the svd. The singular
value decomposition of X is given by an n × n orthogonal matrix U and
a p× p orthogonal matrix V , and nonzero singular values λ1, . . . , λm. If we
partition U and V as

U =
[ m n−m

n U1 U2

]
and V =

[ m p−m

p V1 V2
]

then X = U1Λ1V
T
1 , where Λ1 = diag(λ1, . . . , λm), a nonsingular m × m

matrix with inverse Λ−11 = diag(λ−11 , . . . , λ−1m ). The columns of U1 provide
an orthonormal basis (onb) for X; the columns of U2 provide an onb for X⊥;
the columns of V1 provide an onb for W; and the columns of V2 provide an
onb for W⊥.

2 A bad thing about non-uniqueness

In statistical applications, we often think of y as a random vector whose
expected value µ = Ey is modelled as an unknown element of the subspace X

of Rn spanned by the columns of a given matrix X. By assumption, the
unknown µ can be written as Xβ for some unknown β in Rp. The fitted
vector ŷ is then thought of as an estimator for the unknown µ and the b̂
for which ŷ = Xb̂ is thought of as an estimator for β. Non-uniqueness of b̂
(or of β itself) clearly causes some embarrassment. How can we interpret
quantities that are not uniquely determined?

Statisticians use two general strategies for avoiding this embarrassment.

(i) Restrict attention to linear functions LTβ (with L ∈ Rp) of the un-
known β that are uniquely determined by µ. That is, only interpret
the linear combinations for which there exists some vector ` in Rn such
that LTβ = `Tµ whenever µ = Xβ. Such linear combinations are said
to be estimable.

(ii) Impose a set of p−m linearly independent linear constraints on b, say
DT

1 b = 0 for fixed p× (p−m) matrix D1, so that to every z ∈ X there
exists a unique b in Rp for which both z = Xb and DT

1 b = 0.
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3 Estimable functions

If L ∈ W then it can be written as a linear combination of the columns
of XT , that is, L = XT ` for some ` in Rn. If Xb = z then

LT b = `TXb = `T z.

In particular, if Xβ = µ ∈ X then LTβ = `Tµ. That is, LTβ is an estimable
function.

Conversely, suppose that L = L1 + L2 with L1 ∈ W and L2 ∈ W⊥ and
b = bZ + w ∈ Bz, as in <4.1>. Then

LT b = LT
1 bz + LT

2 w.

If L2 6= 0 then we can generate many different LT b values by varying w. For
example, try w = 0 then w = L2.

In short, the estimable functions LTβ of the unknown parameters are
precisely those for which L ∈W, that is, L = XT ` for some ` is Rn. In that
case, LT b̂ = `TXb̂ = `T ŷ for every solution b̂ of the equation Xb̂ = ŷ. Under
the linear model where y = µ + ξ with Ey = µ ∈ X and var(ξ) = σ2In we
have

ELT b̂ = LTβ and var
(
LT b̂

)
= σ2 ‖`‖2 .

Remark. There is a role for estimability if we start with an X of full
rank but lose some of the data. When the corresponding rows are
removed from X we might be left with a reduced model matrix that is
not of full rank.

4 Linear constraints

Suppose we constrain the parametrization by adding p − m more rows to
the X matrix, in such a way that the augmented matrix

X̃ =

[ p

n X
p−m DT

1

]
=


p

m W T
1

n−m W T
2

p−m DT
1


has rank p. The columns of X̃T span Rp. The columns of the p × p ma-
trix MT = [W1, D1] span the same space. Thus M has rank p; it is non-
singular. For each z in X there is now a unique b in Rp for which Xb = z
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and DT
1 b = 0:

X̃b =

[ 1

n z
p−m 0

]
iff

(
W T

1

DT
1

)
b =

(
z1
0

)
iff b = M−1

(
z1
0

)
.

Here is another way to derive the solution. It corresponds to the way R
actually handles the over-parametrization problem for factors. The linearly
independent columns of D1 span a (p −m)-dimensional subspace D of Rp.
Find a p ×m matrix D2 whose columns span D⊥, the m-dimensional sub-
space of all vectors in Rp that are orthogonal to D. The requirementDT

1 b = 0
means that b should be orthogonal to D. That is, d = D2a for some a
in Rm. The second requirement then becomes XD2a = z. We now have
a new parametrization for the model with the n × m model matrix XD2

and parameters a ∈ Rm. The equation XD2a = z has a unique solution for
each z in X.

<4.2> Example. Suppose observations y1, y2, . . . , y9 are each identified as coming
from one of three groups by means of a factor variable G with levels “A”,
“B”, and “C”:

G = [A,A,A,B,B,B,C,C,C].

The R command lm(y ~ G) would, conceptually, create a 9 × 4 model
matrix X with columns (1, GA, GB, GC), where GA has ones in the first
three positions and zeros in the remaining six positions. More succinctly,
GA is the indicator function that takes the value 1 when the item comes
from group A and zero otherwise. And so on. The least squares problem
seeks b0, bA, bB, bC to minimize

‖y − b01− bAGA − bBGB − bCGC‖2 .

The matrix X has rank 3, because 1 = GA + GB + GC . The minimiz-
ing bi’s are not unique.

We could make the solution unique by eliminating the intercept term,
that is, by putting b0 = 0. We could also set one of the other bi’s to zero
(treatment contrasts). We could also constrain bA + bB + bC = 0 (sum
contrasts or Helmert contrasts).

The last three of these alternatives correspond to working with a model
matrix of the form (1,GD2), where G = (GA, GB, GC) and D2 is one of the
following three types of matrix:
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> contr.sum(3)

[,1] [,2]

1 1 0

2 0 1

3 -1 -1

> contr.treatment(3)

2 3

1 0 0

2 1 0

3 0 1

> contr.helmert(3)

[,1] [,2]

1 -1 -1

2 1 -1

3 0 2

For details consult Chambers and Hastie (1992, Chapter 2) and Venables
and Ripley (2002, Section 6.2). I’ll also be creating a new handout to show
how the interpretation of the summary output is affected by the different
choices of constraint.

�
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