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1 The multivariate normal and related distributions

Let Z1, Z2, . . . , Zn be independent N(0, 1) random variables. When treated
as the coordinates of a point in Rn they define a random vector Z, whose
(joint) density function is

f(z) = (2π)−n/2 exp
(
−1

2

∑
i
z2i

)
= (2π)−n/2 exp

(
−1

2 ‖z‖
2
)
.

Such a random vector is said to have a spherical normal distribution.
That is, Z ∼ N(0, In).

(i) The chi-square, χ2
n, is defined as the distribution of the sum of

squares Z2
1 + · · · + Z2

n of independent N(0, 1) random variables. The
noncentral chi-square, χ2

n(γ), with noncentrality parameter γ ≥ 0 is
defined as the distribution of the sum of squares (Z1+γ)2+Z2 · · ·+Z2

n.

(ii) If Z ∼ N(0, 1) is independent of S2
k ∼ χ2

k then

Z√
S2
k/k

has a t-distribution on k degrees of freedom (tk)
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(iii) If S2
k ∼ χ2

k is independent of S2
` ∼ χ2

` then

S2
` /`

S2
k/k

has an F -distribution on ` and k degrees of freedom (F`,k)

2 Rotation of axes

The spherical symmetry of the density f(·) is responsible for an important
property of multivariate normals. Let q1, . . . ,qn be a new orthonormal basis
for Rn, and let

Z = W1q1 + · · ·+Wnqn

be the representation for Z in the new basis.

<6.1> Theorem. The W1, . . . ,Wn are also independent N(0, 1) distributed ran-
dom variables.

If you know about multivariate moment generating functions this is easy
to establish using the matrix representation Z = QW, where Q is the or-
thogonal matrix with columns q1, . . . ,qn.

z1

z2

w1

w2

    ball B (in Z-coordinates) =  ball B* (in W-coordinates)

A more intuitive explanation is based on the approximation

P{Z ∈ B} ≈ f(z)(volume of B)

for a small ball B centered at z. The transformation from Z to W corre-
sponds to a rotation, so

P{Z ∈ B} = P{W ∈ B∗},
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where B∗ is a ball of the same radius, but centered at the point w =
(w1, . . . , wn) for which w1q1 + · · · + wnqn = z. The last equality implies
‖w‖ = ‖z‖, from which we get

P{W ∈ B∗} ≈ (2π)−n/2 exp(−1
2 ‖w‖

2)(volume of B∗).

That is, W has the asserted spherical normal density.
To prove results about the spherical normal it is often merely a matter

of transforming to an appropriate orthonormal basis.

<6.2> Theorem. Let X be an m-dimensional subspace of Rn. Let Z be a vector of
independent N(0, 1) random variables, and µ be a vector of constants. Then

(i) the projection Ẑ of Z onto X is independent of the projection Z− Ẑ of
Z onto X⊥, the orthogonal complement of X.

(ii)
∥∥∥Ẑ∥∥∥2 has a χ2

m distribution.

(iii) ‖Z + µ‖2 has a noncentral χ2
n(γ) distribution, with γ = ‖µ‖.

(iv)
∥∥∥Ẑ + µ

∥∥∥2 has a noncentral χ2
m(γ) distribution, with γ = ‖µ‖.

Proof Let q1, . . .qn be an orthonormal basis of Rn such that q1, . . . ,qm

span the space X and qm+1, . . . ,qn span X⊥. If Z = W1q1 + · · · + Wnqn

then

Ẑ = W1q1 + · · ·+Wmqm,

Z− Ẑ = Wm+1qm+1 + · · ·+Wnqn,

‖Z‖2 = W 2
1 + · · ·+W 2

m,

from which the first two asserted properties follow.
For the third and fourth assertions, choose the basis so that µ = γq1.

Then

Z + µ = (W1 + γ)q1 +W2q2 + . . . +Wnqn

Ẑ + µ = (W1 + γ)q1 +W2q2 + · · ·+Wmqm

from which we get the noncentral chi-squares.
�
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<6.3> Example. Suppose X1, . . . , Xn are independent random variables, each dis-
tributed N(µ, σ2). Define X = n−1

∑
i≤nXi and S2 =

∑
i≤n(Xi − X)2.

Many textbooks prove the following assertion in a gruesome way:

X ∼ N(µ, σ2/n) independent of S2/σ2 ∼ χ2
n−1.

The clean proof uses the fact that the random variables Zi = (Xi−µ)/σ
are independent N(0, 1)’s, so that Z = (Z1, . . . , Zn) ∼ N(0, In). Define
q1 = 1/

√
n then find q2, . . . , qn so that {qi : 1 ≤ i ≤ n} is an onb for Rn.

(Actually it is not necessary to calculate q2, . . . , qn explicitly. It suffices to
know that such qi’s exist.

From Theorem <6.1>, if

Z = W1q1 + · · ·+Wnqn

then the Wi’s are independent N(0, 1). In particular, Z = 1
TZ/n = W1 ∼

N(0, 1) so that

X = µ+ σZ ∼ N(µ, σ2).

Also Z− Z1 =
∑n

i=2Wiqi so that

S2 = σ2
∑

i≤n
(Zi − Z)2 =

∑
2≤i≤n

W 2
i ∼ χ2

n−1.

The independence comes from the fact that X is a function of W1 and S2

is a function of W2, . . . ,Wn.
�

3 Facts about the multivariate normal

Suppose Z ∼ N(0, In) and µ is an m × 1 vector of constants. If A is an
m×n matrix of constants then the random vector X = µ+AZ has expected
value µ and variance matrix V = AA′, and moment generating function

E exp(tTX) = exp(tTµ+ tTAAT t/2) == exp(tTµ+ tTV t/2).

The distribution of X depends only on µ and V . The random vector X has
a N(µ, V ) distribution.

If γ is a k × 1 vector of constants and B is a k ×m matrix of constants
then

γ +BX = (γ +Bµ) +BAZ ∼ N(γ +Bµ,BV B′).
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4 Least squares

Much of the distribution theory for least squares has been worked out for
the simple model where y = µ+ ξ ∼ N(µ, σ2In), where µ is assumed to lie
in some p-dimensional subspace X of Rn. Both µ and σ2 are unknown.

Let q1, . . . , qn be an onb for Rn such that q1, . . . , qp are an onb for X

and qp+1, . . . , qn are an onb for X⊥. Write ξ as σZ, where

Z = [Z1, . . . , Zn] =
∑

i≤n
Wiqi.

From Theorem <6.1>, W ∼ N(0, In).
The matrix

H =
∑

i≤p
qiq

T
i

projects vectors orthogonally onto X. Thus

ŷ = H(µ+ σZ) = µ+ σHZ = µ+ σ
∑

i≤p
Wiqi.

To be continued.
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