Chapter 6

Normal errors

6	Normal errors		1
	1	The multivariate normal and related distributions	1
	2	Rotation of axes	2
	3	Facts about the multivariate normal	4
	4	Least squares	5

1 The multivariate normal and related distributions

Let Z_1, Z_2, \ldots, Z_n be independent N(0, 1) random variables. When treated as the coordinates of a point in \mathbb{R}^n they define a random vector \mathbf{Z} , whose (joint) density function is

$$f(\mathbf{z}) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \sum_{i} z_{i}^{2}\right) = (2\pi)^{-n/2} \exp\left(-\frac{1}{2} \|\mathbf{z}\|^{2}\right).$$

Such a random vector is said to have a *spherical normal distribution*. That is, $\mathbf{Z} \sim N(0, I_n)$.

- (i) The *chi-square*, χ_n^2 , is defined as the distribution of the sum of squares $Z_1^2 + \cdots + Z_n^2$ of independent N(0,1) random variables. The *noncentral chi-square*, $\chi_n^2(\gamma)$, with noncentrality parameter $\gamma \ge 0$ is defined as the distribution of the sum of squares $(Z_1 + \gamma)^2 + Z_2 \cdots + Z_n^2$.
- (ii) If $Z \sim N(0,1)$ is independent of $S_k^2 \sim \chi_k^2$ then

$$\frac{Z}{\sqrt{S_k^2/k}}$$
 has a *t*-distribution on *k* degrees of freedom (t_k)

(iii) If
$$S_k^2 \sim \chi_k^2$$
 is independent of $S_\ell^2 \sim \chi_\ell^2$ then

$$\frac{S_\ell^2/\ell}{S_k^2/k}$$
has an *F*-distribution on ℓ and *k* degrees of freedom ($F_{\ell,k}$)

2 Rotation of axes

The spherical symmetry of the density $f(\cdot)$ is responsible for an important property of multivariate normals. Let $\mathbf{q}_1, \ldots, \mathbf{q}_n$ be a new orthonormal basis for \mathbb{R}^n , and let

$$\mathbf{Z} = W_1 \mathbf{q}_1 + \dots + W_n \mathbf{q}_n$$

be the representation for \mathbf{Z} in the new basis.

<6.1>

Theorem. The W_1, \ldots, W_n are also independent N(0,1) distributed random variables.

If you know about multivariate moment generating functions this is easy to establish using the matrix representation $\mathbf{Z} = Q\mathbf{W}$, where Q is the orthogonal matrix with columns $\mathbf{q}_1, \ldots, \mathbf{q}_n$.

A more intuitive explanation is based on the approximation

 $\mathbb{P}\{\mathbf{Z} \in B\} \approx f(\mathbf{z}) \text{(volume of } B)$

for a small ball B centered at \mathbf{z} . The transformation from \mathbf{Z} to \mathbf{W} corresponds to a rotation, so

$$\mathbb{P}\{\mathbf{Z}\in B\}=\mathbb{P}\{\mathbf{W}\in B^*\},\$$

Draft: 4 Oct 2016 © David Pollard

where B^* is a ball of the same radius, but centered at the point $\mathbf{w} = (w_1, \ldots, w_n)$ for which $w_1\mathbf{q}_1 + \cdots + w_n\mathbf{q}_n = \mathbf{z}$. The last equality implies $\|\mathbf{w}\| = \|\mathbf{z}\|$, from which we get

$$\mathbb{P}\{\mathbf{W} \in B^*\} \approx (2\pi)^{-n/2} \exp(-\frac{1}{2} \|\mathbf{w}\|^2) \text{(volume of } B^*\text{)}.$$

That is, W has the asserted spherical normal density.

To prove results about the spherical normal it is often merely a matter of transforming to an appropriate orthonormal basis.

- <6.2> **Theorem.** Let \mathfrak{X} be an *m*-dimensional subspace of \mathbb{R}^n . Let \mathbf{Z} be a vector of independent N(0,1) random variables, and $\boldsymbol{\mu}$ be a vector of constants. Then
 - (i) the projection \$\hfrac{\mathbf{Z}}{\mathbf{Z}}\$ of \$\mathbf{Z}\$ onto \$\mathbf{X}\$ is independent of the projection \$\mathbf{Z} \mathbf{Z}\$ of \$\mathbf{Z}\$ onto \$\mathbf{X}\$[⊥]\$, the orthogonal complement of \$\mathbf{X}\$.
 - (ii) $\left\|\widehat{\mathbf{Z}}\right\|^2$ has a χ_m^2 distribution.
 - (iii) $\|\mathbf{Z} + \boldsymbol{\mu}\|^2$ has a noncentral $\chi_n^2(\gamma)$ distribution, with $\gamma = \|\boldsymbol{\mu}\|$.
 - (iv) $\left\|\widehat{\mathbf{Z}} + \boldsymbol{\mu}\right\|^2$ has a noncentral $\chi_m^2(\gamma)$ distribution, with $\gamma = \|\boldsymbol{\mu}\|$.

PROOF Let $\mathbf{q}_1, \ldots, \mathbf{q}_n$ be an orthonormal basis of \mathbb{R}^n such that $\mathbf{q}_1, \ldots, \mathbf{q}_m$ span the space \mathcal{X} and $\mathbf{q}_{m+1}, \ldots, \mathbf{q}_n$ span \mathcal{X}^{\perp} . If $\mathbf{Z} = W_1 \mathbf{q}_1 + \cdots + W_n \mathbf{q}_n$ then

$$\widehat{\mathbf{Z}} = W_1 \mathbf{q}_1 + \dots + W_m \mathbf{q}_m,$$
$$\mathbf{Z} - \widehat{\mathbf{Z}} = W_{m+1} \mathbf{q}_{m+1} + \dots + W_n \mathbf{q}_n,$$
$$\|\mathbf{Z}\|^2 = W_1^2 + \dots + W_m^2,$$

from which the first two asserted properties follow.

For the third and fourth assertions, choose the basis so that $\mu = \gamma \mathbf{q}_1$. Then

$$\mathbf{Z} + \boldsymbol{\mu} = (W_1 + \gamma)\mathbf{q}_1 + W_2\mathbf{q}_2 + \dots + W_n\mathbf{q}_n$$
$$\widehat{\mathbf{Z}} + \boldsymbol{\mu} = (W_1 + \gamma)\mathbf{q}_1 + W_2\mathbf{q}_2 + \dots + W_m\mathbf{q}_m$$

from which we get the noncentral chi-squares.

Draft: 4 Oct 2016 © David Pollard

<6.3> **Example.** Suppose X_1, \ldots, X_n are independent random variables, each distributed $N(\mu, \sigma^2)$. Define $\overline{X} = n^{-1} \sum_{i \leq n} X_i$ and $S^2 = \sum_{i \leq n} (X_i - \overline{X})^2$. Many textbooks prove the following assertion in a gruesome way:

 $\overline{X} \sim N(\mu, \sigma^2/n)$ independent of $S^2/\sigma^2 \sim \chi^2_{n-1}$.

The clean proof uses the fact that the random variables $Z_i = (X_i - \mu)/\sigma$ are independent N(0,1)'s, so that $\mathbf{Z} = (Z_1, \ldots, Z_n) \sim N(0, I_n)$. Define $q_1 = 1/\sqrt{n}$ then find q_2, \ldots, q_n so that $\{q_i : 1 \le i \le n\}$ is an onb for \mathbb{R}^n . (Actually it is not necessary to calculate q_2, \ldots, q_n explicitly. It suffices to know that such q_i 's exist.

From Theorem <6.1>, if

$$\mathbf{Z} = W_1 q_1 + \dots + W_n q_n$$

then the W_i 's are independent N(0,1). In particular, $\overline{Z} = \mathbb{1}^T \mathbf{Z}/n = W_1 \sim N(0,1)$ so that

$$\overline{X} = \mu + \sigma \overline{Z} \sim N(\mu, \sigma^2).$$

Also $\mathbf{Z} - \overline{Z} \mathbb{1} = \sum_{i=2}^{n} W_i q_i$ so that

$$S^2 = \sigma^2 \sum_{i \le n} (Z_i - \overline{Z})^2 = \sum_{2 \le i \le n} W_i^2 \sim \chi_{n-1}^2$$

The independence comes from the fact that \overline{X} is a function of W_1 and S^2 is a function of W_2, \ldots, W_n .

3

Facts about the multivariate normal

Suppose $Z \sim N(0, I_n)$ and μ is an $m \times 1$ vector of constants. If A is an $m \times n$ matrix of constants then the random vector $X = \mu + AZ$ has expected value μ and variance matrix V = AA', and moment generating function

$$\mathbb{E}\exp(t^T X) = \exp(t^T \mu + t^T A A^T t/2) = \exp(t^T \mu + t^T V t/2).$$

The distribution of X depends only on μ and V. The random vector X has a $N(\mu, V)$ distribution.

If γ is a $k\times 1$ vector of constants and B is a $k\times m$ matrix of constants then

$$\gamma + BX = (\gamma + B\mu) + BAZ \sim N(\gamma + B\mu, BVB').$$

Draft: 4 Oct 2016 © David Pollard

4

4 Least squares

Much of the distribution theory for least squares has been worked out for the simple model where $y = \mu + \xi \sim N(\mu, \sigma^2 I_n)$, where μ is assumed to lie in some *p*-dimensional subspace \mathfrak{X} of \mathbb{R}^n . Both μ and σ^2 are unknown.

Let q_1, \ldots, q_n be an onb for \mathbb{R}^n such that q_1, \ldots, q_p are an onb for \mathfrak{X} and q_{p+1}, \ldots, q_n are an onb for \mathfrak{X}^{\perp} . Write ξ as $\sigma \mathbf{Z}$, where

$$\mathbf{Z} = [Z_1, \dots, Z_n] = \sum_{i \le n} W_i q_i.$$

From Theorem $\langle 6.1 \rangle$, $\mathbf{W} \sim N(0, I_n)$. The matrix

$$H = \sum_{i \le p} q_i q_i^T$$

projects vectors orthogonally onto \mathfrak{X} . Thus

$$\widehat{y} = H(\mu + \sigma \mathbf{Z}) = \mu + \sigma H \mathbf{Z} = \mu + \sigma \sum_{i \le p} W_i q_i.$$

To be continued.

Draft: 4 Oct 2016 ©David Pollard