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1 An experiment with two factors

The following small data set was used by BHH = Box et al. (1978, Section
7.7; 8.1 in 2nd ed.). They borrowed the data from Box and Cox (1964,
Section 4), a paper that contains an extensive discussion about how and
why to transform data before feeding them into a standard analysis.

“[The data set] gives the survival times of animals in a 3 x 4 fac-
torial experiment, the factors being (a) three poisons and (b) four
treatments. Each combination of the two factors is used for four
animals, the allocation to animals being completely randomized.”

BHH were using the data set to explain the virtues of data transfor-
mation. They argued that it was better to make a least squares fit for
rate = 1/time, rather than fitting time itself. My purpose is different. I
want to show you how different reparametrizations affect the output. The
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reparametrization is achieved by using different forms of contrasts for the
factor variables.

2 The data set

BC <- read.table("boxcox.data", header=T,sep="\t")
BC$rate <- 1/BC$time # transformation suggested by BHH page 235

# poison and treatment are factors

print(BC[c(1,5,17,24:25,48),],digits=3)

## time poison treatment rate

## 1 0.31 I A 3.23

## 5 0.36 II A 2.78

## 17 0.92 II B 1.09

## 24 0.29 III B 3.45

## 25 0.43 I C 2.33

## 48 0.33 III D 3.03

A friendlier view of the data:

## A B C D

## I 0.31 0.82 0.43 0.45

## I 0.45 1.10 0.45 0.71

## I 0.46 0.88 0.63 0.66

## I 0.43 0.72 0.76 0.62

## II 0.36 0.92 0.44 0.56

## II 0.29 0.61 0.35 1.02

## II 0.40 0.49 0.31 0.71

## II 0.23 1.24 0.40 0.38

## III 0.22 0.30 0.23 0.30

## III 0.21 0.37 0.25 0.36

## III 0.18 0.38 0.24 0.31

## III 0.23 0.29 0.22 0.33

Here are four attempts at fitting a linear model (unorthodox notation):

E time(poison = i, treatment = j) = m+ αi + βj<5.1>

E time(poison = i, treatment = j) = m+ αi + βj + γi,j<5.2>

E rate(poison = i, treatment = j) = m+ αi + βj<5.3>

E rate(poison = i, treatment = j) = m+ αi + βj + γi,j<5.4>

The γi,j terms are called interactions.
The more tradition way to express the model would be to write yi,j,k for

the response (such as time) for the kth replicate (k = 1, . . . , 4) under the ith
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poison (i = I, II, III) and the jth treatment (j = A,B,C). For example,
one would then rewrite <5.1> as

yi,j,k = m+ αi + βj + ξi,j,k,<5.5>

where ξi,j,k is an unobservable random error.
The four models correspond to the R commands:

out1 <- lm(time ~ poison + treatment, data=BC)

out2 <- lm(time ~ poison * treatment, data=BC) # interactions

out3 <- lm(rate ~ poison + treatment, data=BC)

out4 <- lm(rate ~ poison * treatment, data=BC) # interactions

For the moment I’ll put up with whatever reparametrization R has used.
Here is the summary for <5.1>:

## lm(formula = time ~ poison + treatment, data = BC)

## Residuals:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -0.25170 -0.09625 -0.01490 0.00000 0.06177 0.49830

## Rsquared: 0.65

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.452 0.056 8.088 0.000

## poisonII -0.073 0.056 -1.308 0.198

## poisonIII -0.341 0.056 -6.102 0.000

## treatmentB 0.363 0.065 5.614 0.000

## treatmentC 0.078 0.065 1.213 0.232

## treatmentD 0.220 0.065 3.407 0.001

Actually, for both factors R has used treatment contrasts, which seems to
be the default for my copy of the program: see options()$contrasts. You
can see from the summary that poisonI and treatmentA are missing from
the list of coefficients. The constraint applied to <5.1> was α1 = β1 = 0.

From now on, to conserve space, I’ll show only an abbreviated part of
the summary: the call, the coefficients, and their estimated standard errors.
For example, the display for out1 would be reduced to:

## lm(formula = time ~ poison + treatment, data = BC)

## (Int) pII pIII tB tC tD

## Est 0.452 -0.073 -0.341 0.363 0.078 0.220

## StdErr 0.056 0.056 0.056 0.065 0.065 0.065

The summary for out4 would be
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## lm(formula = rate ~ poison * treatment, data = BC)

## (Int) pII pIII tB tC tD pII:tB pIII:tB pII:tC pIII:tC

## Est 2.49 0.78 2.32 -1.32 -0.62 -0.80 -0.55 -0.45 0.07 0.086

## StdErr 0.24 0.35 0.35 0.35 0.35 0.35 0.49 0.49 0.49 0.490

## pII:tD pIII:tD

## Est -0.77 -0.91

## StdErr 0.49 0.49

The coefficient labelled pII:tB corresponds to the interaction parame-
ter γi,j with i = II and j = B.

The plots of residuals against fitted values certainly suggest that the
assumption of constant variance is hard to believe for the time variable:
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Notice the strange pattern in the first two residual plots.
The interaction term slightly improves the additive fit for time, but not
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by much. The fit with interaction terms for rate also shows only a slight
improvement over the additive fit.

From now on I’ll ignore the issue of how to choose a transformation and
focus on the interpretation of the coefficients for lm(rate∼).

3 Interpretation of coefficients for one factor

Let me start with the simpler case of just one factor, first (out5) with the
intercept explicitly excluded and then (out6) with an intercept.

## lm(formula = rate ~ -1 + treatment, data = BC)

## tA tB tC tD

## Est 3.5 1.9 2.9 2.2

## StdErr 0.3 0.3 0.3 0.3

## lm(formula = rate ~ 1 + treatment, data = BC)

## (Int) tB tC tD

## Est 3.5 -1.7 -0.6 -1.4

## StdErr 0.3 0.4 0.4 0.4

The factor BC$treatment implicitly defines four dummy predictors, 1A,
1B, 1C , and 1D. The dummy 1A contains a 1 wherever BC$treatment

contains an A and zeros elsewhere, and so on. In R you could manufac-
tor dummyT = 1treat = (1A,1B,1C ,1D) by

dummyT <- outer(BC$treat,levels(BC$treat),"==")+0

# the zero converts from Boolean to numeric

dimnames(dummyT)[[2]] <- levels(BC$treatment)

dummyT[c(1:2,13:14,25:26,37:38),]

## A B C D

## [1,] 1 0 0 0

## [2,] 1 0 0 0

## [3,] 0 1 0 0

## [4,] 0 1 0 0

## [5,] 0 0 1 0

## [6,] 0 0 1 0

## [7,] 0 0 0 1

## [8,] 0 0 0 1

If I only showed rows 1, 13, 25, 37 you would see I4, the 4 × 4 identity
matrix. Why?

Both least squares fits use the same 4-dimensional model space X spanned
by the columns of the 48× 5 matrix

<5.6> X = span(1,1A,1B,1C ,1D).
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The dimension is only 4 because 1 = 1A + 1B + 1C + 1D.

3.1 Without intercept, contrasts not used

The out5 model matrix X5 is 1treat = dummyT itself. The generic element z
of X is expressed as z = bA1A + bB1B + bC1C + bD1D. The least squares
estimates b̂A, . . . , b̂D are just the means over responses at the same level of
the BC$treatment factor.

print( rbind(out6$coeff,tapply(BC$rate,BC$treatment,mean)),digits=4)

## (Intercept) treatmentB treatmentC treatmentD

## [1,] 3.519 -1.657 -0.5721 -1.358

## [2,] 3.519 1.862 2.9472 2.161

3.2 With intercept, treatment contrasts

The default contrasts for the factor BC$treatment are treatment. (Un-
fortunate clash of names in there.) The model matrix for out6 is X6 =
(1,1B,1C ,1D). The generic z in X is expressed as z = a01 + a21B +
a31C + a41D. There is a one-to-one correspondence between the column
vector b = [bA, bB, bC , bD] and the column vector a = [a0, a2, a3, a4] for
which

bA1A + bB1B + bC1C + bD1D = z = a01 + a21B + a31C + a41D,

namely bA = a0 and bB = a0 + a2 and bC = a0 + a3 and bD = a0 + a4. In
matrix terms b = K6a where K6 is the matrix

## [,1] [,2] [,3] [,4]

## [1,] 1 0 0 0

## [2,] 1 1 0 0

## [3,] 1 0 1 0

## [4,] 1 0 0 1

In particular, b̂ = K6â and var(̂b) = K6var(â)KT
6 . The summary.lm()

function, which gets called when we ask for summary() of an lm object,
actually calculates the estimated matrix of variances and covariances for
the estimated coefficients.
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V6 <- summary(out6)$cov

ahat <- out6$coeff

newbhat <- K6 %*% ahat

V5 <- K6 %*% V6 %*% t(K6)

both <- rbind( BC.coeff(out5),t(newbhat), stderr=sqrt(diag(V5)))

## lm(formula = rate ~ -1 + treatment, data = BC)

## tA tB tC tD

## Est 3.5 1.9 2.9 2.2

## StdErr 0.3 0.3 0.3 0.3

print(both,digits=3)

## tA tB tC tD

## Est 3.519 1.862 2.947 2.161

## StdErr 0.292 0.292 0.292 0.292

## 3.519 1.862 2.947 2.161

## stderr 0.289 0.289 0.289 0.289

A little bit of round-off error in there.

3.3 With intercept, Helmert contrasts

Now add another column to BC, a copy of BC$treatment with its constrasts
changed from the default to Helmert. You won’t see any difference between
BC$treatment and BC$Htreatment if you just print out BC, but it does make
a difference to the coefficients for the least squares fit. You will also see a
difference in the contrast matrices:

BC$Htreatment <- C(BC$treatment,helmert)

C6 <- contrasts(BC$treatment)

C7 <- contrasts(BC$Htreatment)

cbind(C6,C7)

## B C D

## A 0 0 0 -1 -1 -1

## B 1 0 0 1 -1 -1

## C 0 1 0 0 2 -1

## D 0 0 1 0 0 3

Each of out5, out6, and out7 give the same fitted vector and the same
residuals. Only the parametrization for X changes.

out7 <- lm(rate ~ 1+ Htreatment, BC)

summary(cbind(out5$res,out6$res,out7$res))
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## V1 V2 V3

## Min. :-1.6314 Min. :-1.6314 Min. :-1.6314

## 1st Qu.:-0.7443 1st Qu.:-0.7443 1st Qu.:-0.7443

## Median :-0.2581 Median :-0.2581 Median :-0.2581

## Mean : 0.0000 Mean : 0.0000 Mean : 0.0000

## 3rd Qu.: 0.8479 3rd Qu.: 0.8479 3rd Qu.: 0.8479

## Max. : 2.0362 Max. : 2.0362 Max. : 2.0362

Write L = {A,B,C,D} for the levels of the factor BC$treatment. By
construction, the columns of the contrast matrix C7 form a basis for the sub-
space of R4 orthogonal to the column vector d = [1, 1, 1, 1]. Every member
of that subspace must be of the form C7h for some h in R3. Conceptually,
out7 is representing a vector z in X as Xf with [fA, fB, fC , fD] orthogonal
to d and X as in <5.6>. That is, for some h in R3,

z = (1,1treat)f = f01 +
∑

t∈L
ft1t with

∑4
t∈L ft = 0

= (1,1treat)

(
1 0
0 C7

)(
f0
h

)
= X7

(
f0
h

)
where X7 = (1,1treatC7).

That is

z = X7g where g =

(
f0
h

)
and f = K7g with K7 =

(
1 0
0 C7

)
.

You can check that the out7 least squares fit does use the 48 × 4 model
matrix X7, by verifying that model.matrix(out7)−X7 = 0.

R identifies the components of ĝ by the names (Intercept), Htreatment1,
Htreatment2, and Htreatment3:

look(out7)

## lm(formula = rate ~ 1 + Htreatment, data = BC)

## Residuals:

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -1.6310 -0.7443 -0.2581 0.0000 0.8479 2.0360

## Rsquared: 0.312

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.622 0.146 17.947 0.000

## Htreatment1 -0.829 0.207 -4.010 0.000

## Htreatment2 0.086 0.119 0.717 0.477

## Htreatment3 -0.154 0.084 -1.823 0.075
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Remark. There is an easier way to interpret the rows of X7.

X7 <- cbind(1,dummyT %*% C7)

dimnames(X7)[[2]] <- c("int","Ht1","Ht2","Ht3")

data.frame(X7,treat=BC$treatment)[c(1:2,13:14,25:26,37:38),]

## int Ht1 Ht2 Ht3 treat

## 1 1 -1 -1 -1 A

## 2 1 -1 -1 -1 A

## 13 1 1 -1 -1 B

## 14 1 1 -1 -1 B

## 25 1 0 2 -1 C

## 26 1 0 2 -1 C

## 37 1 0 0 3 D

## 38 1 0 0 3 D

Each A in treat is coded by the first row of C7, each B is coded by
the second row of C7, and so on.

For the estimated coefficients we have the correspondence f̂ = K7ĝ, so
that var(f̂) = K7var(ĝ)KT

7 .

K7 <- cbind(0,rbind(0,C7))

K7[1,1] <- 1

ghat <- out7$coeff

Fhat <- as.vector(K7 %*% ghat)

names(Fhat) <- c("int",levels(BC$Ht))

Vfhat <- K7 %*% summary(out7)$cov %*% t(K7)

fhat.stderr <- sqrt(diag(Vfhat))

est <- rbind(fhat = Fhat,std.err=fhat.stderr)

print(est,3)

## int A B C D

## fhat 2.622 0.897 -0.76 0.325 -0.461

## std.err 0.144 0.250 0.25 0.250 0.250

Remember that each of out5, out6, and out7, together with the f̂ rep-
resentation, give the same fitted vector ŷ. They express ŷ using different
estimated coefficients:

BC.coeff(out6,3)

## lm(formula = rate ~ 1 + treatment, data = BC)

## (Int) tB tC tD

## Est 3.519 -1.657 -0.572 -1.358

## StdErr 0.292 0.413 0.413 0.413
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BC.coeff(out5,3)

## lm(formula = rate ~ -1 + treatment, data = BC)

## tA tB tC tD

## Est 3.519 1.862 2.947 2.161

## StdErr 0.292 0.292 0.292 0.292

BC.coeff(out7,3)

## lm(formula = rate ~ 1 + Htreatment, data = BC)

## (Int) Ht1 Ht2 Ht3

## Est 2.622 -0.829 0.0855 -0.1538

## StdErr 0.146 0.207 0.1193 0.0844

print(est,3) # fhat derived from out7

## int A B C D

## fhat 2.622 0.897 -0.76 0.325 -0.461

## std.err 0.144 0.250 0.25 0.250 0.250

Which is easiest to interpret?

4 Two factors

The story gets more complicated when both the posion and treatment factors
are used as predictors.

To be continued.
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