Statistics 312/612, fall 2016

Homework # 6

Due: Monday 24 October

- [1] (extra credit) Suppose $y \sim N(X\theta, \sigma^2 I_n)$ where X is an $n \times p$ matrix of rank m < p and θ is constrained to belong to the subspace of \mathbb{R}^p generated by the columns of a $p \times m$ matrix \mathbb{M} of rank m. That is, $\theta \in \Theta = \{\mathbb{M}t : t \in \mathbb{R}^m\}$. For a given g in \mathbb{R}^p , we seek an L in \mathbb{R}^n for which $L^T y \sim N(g^T \theta, \sigma^2 ||L||^2)$ under the θ model, where ||L|| is as small as possible.
 - (i) Express the minimizing L in terms of the singular value decomposition $U_1\Lambda_1V_1^T$ for the matrix $\widetilde{X} = X\mathbb{M}$ and the vector d for which $\mathbb{M}^T g = V_1 d$. (I know the solution is similar to something in the notes but I want to see you derive the whole result.)
 - (ii) Deduce from (i) that $L^T y = g^T \widehat{\theta}$.
- [2] The handout Normal.pdf discussed once more the reparametrization via Helmert contrasts for the least squares fit outBC <- lm(rate ~ Ht + Hp,BC). It asserted that there is a one-to-one correspondence between the vector of constrained parameters

$$\theta = [int, A, B, C, D, I, II, III]$$

and the vector of parameters for the reparametrized fit

```
\tau = [H.int, Ht1, Ht2, Ht3, Hp1, Hp2].
```

Remark. For typesetting convenience I am referring to the components of θ and τ by the names used in **R**, rather in subscripted notation: $\theta_{int}, \theta_{A}, \ldots$ and $\tau_{H,int}, \tau_{Ht1}, \ldots$

The correspondence comes via the equality $z = X\theta = \widetilde{X}\tau$ for z in \mathfrak{X} , the 6-dimensional subspace of \mathbb{R}^{48} spanned by the columns of the matrix

```
X = (\mathbb{1}_{48}, F_1, F_2, F_3, F_4, G_1, G_2, G_3).
```

Here $F=(F_1,F_2,F_3,F_4)$ is the matrix of dummy variables for the factor Ht and $G=(G_1,G_2,G_3)$ is the matrix of dummy variables for the factor Hp. The space $\mathfrak X$ is also spanned by the columns of $\widetilde X=\mathtt{model.matrix}(\mathtt{outBC})$.

(i) (20 points) Show how each of the θ 's is represented as a linear combination of the τ 's. Also show how each of the τ 's is represented as a linear combination of the θ 's.

You might find it to be more convenient to present your answers as matrices with dimnames, printed out by **R**:

To make your matrices look pretty use the fractions() function from the MASS library. Hint: Two rows of X are they same if they correspond to the same combination of the two factors. The problem is the essentially unchanged if we discard all duplicate rows, replacing X by the 12×8 matrix $X_0 = \text{unique}(X)$ and \widetilde{X} by $\widetilde{X}_0 = \text{unique}(X\text{tilde})$.

(ii) (20 points) With X replaced by X_0 , the generic element of $\mathfrak{X}_0 = \mathrm{span}(X_0)$ is a 12×1 vector z, whose components can be labelled as

$$AI, BI, CI, DI, AII, BII, CII, DII, AIII, BIII, CIII, DIII$$

Produce displays showing how z is a linear function of τ and how τ is a linear function of z.

```
options(width=100)
dimnames(z.from.tau);  # print(z.from.tau)

## [[1]]
## [1] "AI" "BI" "CI" "DI" "AII" "BII" "CII" "DII" "AIII" "BIII" "CIII" "DIII"

## [[2]]
## [1] "H.int" "Ht1" "Ht2" "Ht3" "Hp1" "Hp2"

cat("\n")

dimnames(tau.from.z);  # print(fractions(tau.from.z))

## [[1]]
## [[1]] "H.int" "Ht1" "Ht2" "Ht3" "Hp1" "Hp2"

## [1]
```

- (iii) (5 points) As a check, show the **R** code confirming that (within round-off error) the 12 distinct values from outBC\$fit are given by $X_0\widehat{\theta} = \widetilde{X}_0\widehat{\tau}$.
- (iv) (10 points) Now suppose we are interested in some linear combination of the parameters, $g^T\theta$, for a specified g. Find the distribution of $g^T\widehat{\theta}$ under the θ -model. Explain your reasoning. Express your answer as an expression involving the unknown σ^2 , the unknown θ , quantities available from outBC\$qr, and the matrix M for which $\widetilde{X} = XM$.
- (v) (10 points) Find the constant c for which $cg^T \hat{\theta}/\hat{\sigma}$ has a t-distribution if $g^T \theta = 0$.
- (vi) (10 points) Calculate the t-statistic and the two-sided p-value for that statistic for testing the hypothesis that $\theta_A = \theta_B$, assuming the truth of the model.
- [3] In class you learned that if $Z = [Z_1, \ldots, Z_5] \sim N(0, I_5)$ then the statistic

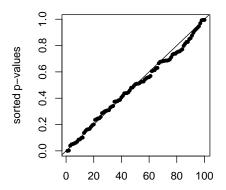
$$T = \sqrt{5}\overline{Z}/\sqrt{\sum_{i \le 5} (Z_i - \overline{Z})^2/4}$$

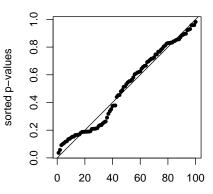
has a t_4 -distribution. Equivalently pt(T,4) has a uniform distribution, where pt(t,4) is the \mathbf{R} command to calculate $\mathbb{P}\{T_4 \leq t\}$ for $T_4 \sim t_4$.

- (i) (5 points) Write an ${\bf R}$ function that calculates T from a 5×1 vector Z. Show your code.
- (ii) (5 points) Write an **R** function that takes a 5×100 matrix ZZ, calculates the *p*-value for each column, then plots the sorted *p*-values for each column against 1:100. If you want to be fancy, add a straight line as in the following pictures. Show your code.

100 observations from N(0,I_5)

100 observations from Cauchy_5





- (iii) (5 points) Show \mathbf{R} code that would generate the two pictures: first when ZZ is filled with independent N(0,1)'s and then when ZZ is filled with independent standard Cauchy random variables. (I used $\mathtt{set.seed}(0)$. You might want to do the same if you hope to convince us by picture that your code works.)
- (iv) (extra points) Draw some wise conclusion from a comparison of the two pictures. For example, why don't the long tails of the Cauchy have a stronger effect on the second picture?