Statistics 312/612, fall 2016 Homework # 1 Due: Monday 12 September

- [1] (5 points) Suppose $A = (a_1, \ldots, a_n)$ is an $n \times n$ matrix for which ||At|| = ||t|| for all $t \in \mathbb{R}^n$. (That is, A is an isometry.) Show that the columns a_1, \ldots, a_n are orthogonal unit vectors, that is, A is an orthogonal matrix. Hint: Let e_i denote the *i*th column of the identity matrix I_n . Consider $||Ae_1||$ and $||A(e_1 + e_2)||^2$.
- [2] (10 points) If y and w are vectors in \mathbb{R}^n the correlation between them is defined as

$$\operatorname{corr}(y, w) = \frac{\langle y - \bar{y}\mathbb{1}, w - \overline{w}\mathbb{1} \rangle}{\|y - \bar{y}\mathbb{1}\| \|w - \overline{w}\mathbb{1}\|}$$

It equals the cosine of the angle between the vectors $y - \bar{y}\mathbb{1}$ and $w - \overline{w}\mathbb{1}$, which always lies between -1 and +1.

Now suppose that $q_1 = n^{-1/2} \mathbb{1}, q_2, \ldots, q_n$ is an orthonormal basis for \mathbb{R}^n and that \mathfrak{X} is the *m*-dimensional subspace spanned by q_1, \ldots, q_m . Let w equal \hat{y} , the orthogonal projection of y onto \mathfrak{X} . The following facts could be shown using the representation $y = \sum_{i \leq n} s_i q_i$ where $s_i = \langle q_i, y \rangle$, although that is not the quickest method.

- (i) Show that $\overline{w} = \overline{y}$. Hint: The residual vector $r = y \hat{y}$ is orthogonal to \mathfrak{X} .
- (ii) Show that $\langle y \bar{y}\mathbb{1}, \hat{y} \bar{y}\mathbb{1} \rangle = \|\hat{y} \bar{y}\mathbb{1}\|^2$.
- (iii) Deduce that $\operatorname{corr}(y, \hat{y})^2 = \|\hat{y} \bar{y}\mathbb{1}\|^2 / \|y \bar{y}\mathbb{1}\|^2$.

Remark. The quantity $\operatorname{corr}(y, \hat{y})^2$ is usually denoted by R^2 , sometimes called the "multiple *R*-squared". (Not to be confused with the matrix *R* from the QR decomposition nor the program **R**). It takes values between 0 and 1. If $R^2 = 1$ then $\hat{y} = y$, which means the model has done a good job at approximating *y*. Some users of regression get very happy when R^2 is close enough to 1, where 'close enough' can sometimes mean $R^2 > 0.1$. In my experience, $R^2 \approx 1$ is usually a sign that something is very wrong with the model.

[3] (10 points) The handout RMDdemo.Rmd considered a toy least squares example where the model space \mathcal{X} was spanned by the columns of a matrix not of full rank. Using only the vector y and out qr from out <- lm(y ~ ., data=mydata), I showed how the fitted vector \hat{y} could be calculated using matrix calculations.

For this problem I want you to show how some of the other parts of summary(out) (see next page) could be calculated using only y and out\$qr. Display your calculations using R Markdown. No cheating by cutting and pasting from the summary.

Show how to get the two lines following: "Residuals:"; the coefficients (but ignore the stuff about standard errors and t-values); the residual standard error, which is defined as

$$\sqrt{\sum_{i \le n} r_i^2 / (\text{degrees of freedom})}$$
;

and the multiple R-squared.

```
> set.seed(10) # for reproducibility
> mydata <- data.frame(y=rnorm(10),</pre>
+ x1=1:10,x2= 11:20, x3= 0.5*(1:10)-3*(11:20))
> out <- lm(y ~ ., data=mydata)</pre>
> summary(out)
Call:
lm(formula = y ~ ., data = mydata)
Residuals:
   Min
         1Q Median 3Q Max
-1.0211 - 0.5231 0.1832 0.4320 0.9085
Coefficients: (2 not defined because of singularities)
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.18175 0.49193 -0.369 0.721
x1
         -0.05616 0.07928 -0.708
                                     0.499
x2
                NA
                      NA NA
                                         NA
xЗ
                NA
                          NA
                                 NA
                                          NA
```

Residual standard error: 0.7201 on 8 degrees of freedom Multiple R-squared: 0.05903,Adjusted R-squared: -0.05859 F-statistic: 0.5019 on 1 and 8 DF, p-value: 0.4988