Statistics 312/612, fall 2016 Homework # 3 Due: Monday 26 September

[1] (10 points) Suppose X is an $n \times p$ matrix of constants with rank p. Suppose also that $y = X\beta + \xi$ for an unknown $\beta \in \mathbb{R}^p$ and random ξ for which $\mathbb{E}\xi = 0$ and $\operatorname{var}(\xi) = \sigma^2 I_n$. Let \hat{b} be the least squares estimator for β , as described on the handout MeanCov.pdf. Find

$$\frac{\max\{\operatorname{var}(q^T \hat{b}) : ||q|| = 1\}}{\min\{\operatorname{var}(q^T \hat{b}) : ||q|| = 1\}}.$$

[2] Let Z be an $m \times 1$ random vector with $\mathbb{E}Z = \mu_z$ and Y be an $n \times 1$ random vector with $\mathbb{E}Y = \mu_y$. Suppose both $V_z = \operatorname{var}(Z)$ and $V_y = \operatorname{var}(Y)$ are nonsingular. Find the linear functions $a^T Z$ and $b^T Y$ for which the correlation is largest. That is, find vectors of constants $a \in \mathbb{R}^m$ and $b \in \mathbb{R}^n$ to maximize

$$\frac{\operatorname{cov}(a^T Z, b^T Y)}{\sqrt{\operatorname{var}(a^T Z)\operatorname{var}(b^T Y)}}.$$

Follow these steps.

(i) (5 points) Explain why we may assume that both μ_z and μ_y are zero, so the problem becomes:

find a and b to maximize
$$\frac{a^T \mathbb{E}(ZY^T) b}{\sqrt{\mathbb{E}(a^T Z)^2 \ \mathbb{E}(b^T Y)^2}}$$

- (ii) (5 points) Explain why the problem is essentially unchanged if we replace Z by $\tilde{Z} = V_z^{-1/2}Z$ and Y by $\tilde{Y} = V_y^{-1/2}Y$. See the back of this problem sheet if you are not familiar with the positive square root of a symmetric, positive definite square matrix.
- (iii) (5 points) Write K for $\mathbb{E}(\widetilde{Z}\widetilde{Y}^T)$. Show that the problem reduces to a search for unit vectors u and v for which $u^T K v$ is maximized.
- (iv) (5 points) Use the singular value decomposition for K to complete the solution.

[3] Suppose vectors in
$$\mathbb{R}^6$$
 are arranged as 2 × 3 tables: $y = \begin{bmatrix} y_{1,1} & y_{1,2} & y_{1,3} \\ y_{2,1} & y_{2,2} & y_{2,3} \end{bmatrix}$ and

$$\mathbb{I} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad R_1 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad R_2 = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

$$C_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \qquad C_2 = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad C_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Let \mathfrak{X} denote the subspace of \mathbb{R}^6 spanned by $\{\mathbb{1}, R_1, R_2, C_1, C_2, C_3\}$ and

$$\begin{aligned} &\chi_1 = \operatorname{span}\{\mathbb{1}\} \qquad &\chi_R = \operatorname{span}\{R_1 - \frac{1}{2}\mathbb{1}, R_2 - \frac{1}{2}\mathbb{1}\}\\ &\chi_C = \operatorname{span}\{C_1 - \frac{1}{3}\mathbb{1}, C_2 - \frac{1}{3}\mathbb{1}, C_3 - \frac{1}{3}\mathbb{1}\}. \end{aligned}$$

- (i) (5 points) Show that the subspaces $\mathfrak{X}_1, \mathfrak{X}_R, \mathfrak{X}_C$ are mutually orthogonal with dimensions 1, 1, 2.
- (ii) (5 points) Show that the orthogonal projection of a vector y in \mathbb{R}^6 onto \mathfrak{X}_C equals $\sum_{j=1}^3 \bar{y}_{\cdot,j} \left(C_j \frac{1}{3}\mathbb{1}\right)$ where $\bar{y}_{\cdot,j} = \frac{1}{2}(y_{1,j} + y_{2,j})$. Hint: Write out the 2 × 3 tables.
- (iii) (10 points) Show that the orthogonal projection of y onto $\mathfrak X$ equals

$$\bar{y}_{\cdot} \mathbb{1} + \sum_{j=1}^{3} \bar{y}_{\cdot,j} \left(C_j - \frac{1}{3} \mathbb{1} \right) + \sum_{i=1}^{2} \bar{y}_{i} \left(R_i - \frac{1}{2} \mathbb{1} \right),$$

where a dot in the subscript indicates an averaging over the missing subscript.

SPECTRAL DECOMPOSITION (AXLER, 2015, SECTION 7.B)

Suppose S is a $k \times k$ matrix of real numbers. An *eigenvector* of S is a nonzero vector x in \mathbb{R}^k for which $Sx = \theta x$ for some constant θ . The value θ is called an eigenvalue.

If S is symmetric (that is, $S^T = S$) then there exists an orthonormal basis q_1, \ldots, q_k for \mathbb{R}^k such that each q_i is an eigenvector with the corresponding eigenvalues all real. That is, the matrix $Q = (q_1, \ldots, q_k)$ is orthogonal and

$$SQ = Q\Theta$$
 where $\Theta = \operatorname{diag}(\theta_1, \dots, \theta_k)$.

Equivalently,

$$S = Q \Theta Q^T = \sum_{i \le k} \theta_i q_i q_i^T,$$

which is just like a singular-value decomposition with U = V.

Remark. In fact, the svd of a matrix X can be derived from the spectral decomposition of the symmetric matrix $X^T X$.

The matrix S is said to be non-negative definite if $x^T S x \ge 0$ for every x in \mathbb{R}^k . For such a matrix $0 \le q_i^T S q_i = \theta_i$ for every i. The matrix

$$T = \sum_{i \le k} \sqrt{\theta_i} q_i q_i^T = Q \Theta^{1/2} Q^T$$

is also symmetric and positive definite, with $T^2 = S$. Sometimes T is called a **positive** square root of S (Axler, 2015, 7.35). Some authors write $S^{1/2}$ for T.

The matrix S is nonsingular if and only if all the θ_i are > 0. In that case, T is also nonsingular, with inverse

$$T^{-1} = Q\Theta^{-1/2}Q^{T} = \sum_{i \le k} \theta^{-1/2} q_{i} q_{i}^{T}.$$

Some authors write $S^{-1/2}$ for T^{-1} . It has the property that

$$T^{-1}ST^{-1} = Q\Theta^{-1/2}Q^T Q\Theta Q^T Q\Theta^{-1/2}Q^T = I_k.$$

<1> **Example.** Suppose Z is a $k \times 1$ random vector with $V = \operatorname{var}(Z)$ well defined. For simplicity, suppose $\mathbb{E}Z = 0$ so that $V = \mathbb{E}(ZZ^T)$. Clearly V is symmetric. It is also non-negative definite because $x^T V x = \mathbb{E}((x^T Z)^2) \ge 0$. It has a positive square root T. If V is nonsingular then there exists a symmetric matrix $V^{-1/2}$ for which $V^{-1/2}VV^{-1/2} = I_k$. Consequently, $\operatorname{var}(V^{-1/2}Z) = I_k$.

References

Axler, S. J. (2015). Linear Algebra Done Right (Third ed.). Undergraduate Texts in Mathematics. Springer.