
Statistics 312/612, fall 2016
Homework # 10
Due: Friday 9 December

Please attempt this homework by yourself, with no help
from others. Please cite explicitly any sources that you use.

Consider again the usual least squares fit obtained by choosing the vector b ∈ Rp

to minimize ‖y −Xb‖2, where y ∈ Rn and X is a given n× p matrix, not necessarily
of full rank.

Suppose we are worried about the observation yi. For concreteness take i = 1 and
partition the matrices as

y =

(
y1
Y

)
and X =

(
wT

1

W

)
where W :=

w
T
2

...
wT

n

 ,

where Y is the (n−1)×1 vector [y2, . . . , yn]′ and W is the (n−1)×p matrix obtained
by deleting the first row, wT

1 , from X.
Let X denote the subspace of Rn spanned by the columns of X. Let H denote

the hat matrix for orthogonal projection onto X. Let W denote the subspace of Rp

spanned by {wi : 2 ≤ i ≤ n}.
The least squares estimator b̂ is defined to minimize ‖y−Xb‖2. If rank(X) = k < p

then b̂ is not unique, but all solutions give the same fitted value Xb̂ = ŷ = Hy,
where H denotes the hat matrix for orthogonal projection onto X. Similarly, the B̂
that minimizes ‖Y −Wb‖2 need not be unique but all solutions give the same Ŷ = WB̂.

There are various diagnostic procedures that try to detect bad violations of the
normality assumption. This Homework describes three seemingly different diagnostics
that turn out to be almost equivalent.

[1] Write e1 for the unit vector with 1 in the first position.

(i) (10 points) Show that

‖y −Xb− e1c‖2 = (y1 − wT
1 b− c)2 + ‖Y −Wb‖2

and that the left-hand side is minimized by choosing b equal to any B̂ that minimizes
‖Y −Wb‖2 and then choosing ĉ appropriately. Find ĉ.

Solution: For the decomposition, take the squared length of

y −Xb− ce1 =

(
y1 − wT

1 b− c
Y −Wb

)
The least squares B̂ minimizes the ‖Y −Wb‖2 contribution then ĉ = y1−wT

1 B̂
minimizes the first contribution.

(ii) (5 points) Explain why ĉ takes the same value for all choices of B̂ in (i) if and only
if w1 lies in W. Hint: overparametrized handout.

Solution: The columns of the (n−1)×pmatrixW span a subspace span(W )
of Rn−1. The columns of the p × (n − 1) matrix WT span a subspace W =

span(WT ) of Rp. The projection of Y onto span(W ) is Ŷ = WB̂, where B̂
denotes any minimizer of ‖Y −Wb‖2.



IfW has rank ` with singular value decompositionW = UΛV T =
∑

i≤` λiuiv
T
i ,

where λ1 ≥ λ2 ≥ · · · ≥ λ` > 0, then

Ŷ =
∑

i≤`
〈Y, ui〉ui = UUTY.

The p×1 vectors {vi : 1 ≤ i ≤ `} provide an onb for W and {vi : ` < i ≤ p}
provide an onb for W⊥. If b =

∑
i≤p tivi then Wb = Ŷ iff

ti =

{
〈Y, ui〉/λi for 1 ≤ i ≤ `
unconstrained for ` < i ≤ p .

That is, WB̂ = Ŷ iff

B̂ = V Λ−1UTY + g with g ∈W⊥.

The difference y1 − wT
1 B̂ takes the same value for every choice of B̂ iff wT

1 g
takes the same value for every g in W⊥. That happens iff wT

1 g = 0 for every g
in W⊥, which is true only when w1 ⊥W⊥, that is, when w1 ∈W.

Many of you confused the space W with the column space of W . Some of
you even asserted that W (a subspace of Rp) was the same as X (a subspace
of Rn) if w1 ∈W.

(iii) (5 points) If e1 ∈ X show that H11 = 1. (Here H11 denotes the element H[1, 1].)

(iv) (5 points) If e1 ∈ X show that w1 /∈W. Hint: w1 = XT e1.

(v) ( 5 points) If e1 /∈ X show that H11 < 1 and w1 ∈W. Hint: (I −H)e1 ⊥ X.

Solution: Split e1 into orthogonal components in X and X⊥,

e1 = He1 + (In −H)e1 = Xd+ z

for some d in Rp. By the orthogonality

1 = ‖e1‖2 = ‖He1‖2 + ‖z‖2 = H11 + ‖z‖2.

Here I have used the fact that H = HT = H2 to simplify ‖He1‖2 = eT1H
THe1

to eT1He1 = H11.
Thus H11 = 1 if and only if z = 0, which is equivalent to e1 ∈ X.
Similarly

z1 = 〈z, e1〉 = 〈z,Xd〉+ 〈z, z〉 = ‖z‖2,

which shows that z = 0 if and only if z1 = 0.
If e1 ∈ X then e1 = He1 and z = 0, so that
1
0
...
0

 = e1 = Xd =


wT

1 d
wT

2 d
...

wT
n d


The vector d is orthogonal to w2, . . . , wn but not to w1. The vector w1 cannot
be a linear combination of w2, . . . , wn.

If e1 /∈ X, then z 6= 0 and z1 = ‖z‖2 > 0. Also, because z is orthogonal
to X,

0 = zTX = z1w
T
1 + z2w

T
2 + · · ·+ znw

T
n

which rearranges to w1 = (z2w2 + · · ·+ znwn)/z1 ∈W.



From now on assume e1 /∈ X. Write X̃ for the subspace spanned by the e1 and the
columns of X. Write κ for

√
1−H11, the length of the vector z := (I −H)e1.

Solution: If e1 /∈ X there are three orthogonal subspaces of Rn that enter
the solution: the k-dimensional subspace X spanned by the columns of X; the
1-dimensional subspace Q spanned by q0, the unit vector for which

e1 = z +He1 = κq0 +He1;

and the (n− k− 1)-dimensional subspace X̃⊥ that is orthogonal to X̃, which is
spanned by the columns of X and e1.

[2] Define q0 := z/κ. Let {qj : 1 ≤ j ≤ k} be an onb for X.

(i) (5 points) Explain why {qj : 0 ≤ j ≤ k} is an onb for X̃.

Solution: We need to show

X̃ = span(X, e1) = span(X, q0) = span(q1, . . . , qk, q0).

For span(X, e1) ⊆ span(X, q0) note that e1 = κq0 + He1 and He1 ∈ X. For
the other inclusion note that q0 = (e1 − He1)/κ, a linear combination of e1
and He1.

(ii) (5 points) Show that H̃ = H+q0q
T
0 is the hat matrix for orthogonal projection onto X̃.

Solution: The matrix for orthogonal projection onto Q is H0 = q0q
T
0 . The

matrix for orthogonal projection onto X is H =
∑

1≤j≤k qjq
T
j . The matrix H̃

for orthogonal projection onto X̃ is just the sum of H+H0 =
∑

0≤j≤k qjq
T
j . The

term qjq
T
j is the matrix for orthogonal projection onto the subspace spanned

by qj .

(iii) (10 points) Show that the component of y in the q0 direction equals ĉz.

Solution: The vector y is a sum of three orthogonal components Hy +
H0y + (In − H̃)y. The projection onto X̃ equals ỹ = (H +H0)y = XB̂ + ĉe1.
Projection of ỹ orthogonal to X kills off the Hy component, leaving

H0y = (In −H)ỹ = (In −H)(XB̂ + ĉe1) = ĉ(In −H)e1 = ĉz = ĉκq0.

(iv) (10 points) If y ∼ N(µ, σ2In) with µ ∈ X, show that ĉ ∼ N(0, σ2/κ2).

Solution: Write y as µ + σξ where µ ∈ X and ξ ∼ N(0, In). Remember
that qT0 ξ ∼ N(0, 1). Then

κĉq0 = H0 (µ+ σξ) = σH0ξ = σq0q
T
0 ξ.

The µ disappears because q0 ⊥ X. Thus ĉ = σqT0 ξ/κ ∼ N(0, σ2/κ2).

[3] Define σ̂2 = ‖y − Xb̂‖2/(n − k) and Ŝ2 = ‖Y −WB̂‖2/(n − k − 1). Suppose y ∼
N(µ, σ2In) with µ ∈ X.

(i) (10 points) Show that the statistic

ESR1 := κĉ/Ŝ = q′0y/Ŝ

has a tn−k−1 distribution.

Solution: It helps to summarize what we know about the various subspaces
and components before attempting the remaining questions. Most importantly
it is vital to distinguish between projections onto X and projections onto X̃: It



would cause great trouble if we used ŷ to denote both Hy and H̃y. Once again
write y as µ+ σξ where µ ∈ X and ξ ∼ N(0, In).

ŷ = Hy = Xb̂ = µ+ σHξ

ỹ = H̃y = XB̂ + ĉe1 = ŷ +H0y = µ+ σ(H +H0)ξ

H0y = ĉz = σH0ξ so that κĉ = σqT0 ξ

Ŷ = component of Y in span(W )

R = Y − Ŷ

r = y − ŷ = (In −H)y = σ(In −H)ξ = σH0ξ + σ(In − H̃)ξ

r̃ = (In − H̃)y = σ(In − H̃)ξ

The solution to Problem [1] provides another connection between r̃ and the

residual R = Y −WB̂ for the least squares problem with the first row removed:

r̃ = y −XB̂ − ĉe1 =

(
y1 − wT

1 B̂ − ĉ
Y −Wb̂

)
=

(
0
R

)
.

Consequently,

<1> σ2‖(In − H̃)ξ‖2 = ‖r̃‖2 = ‖R‖2 = ‖Y −WB̂‖2 = (n− k − 1)Ŝ2

and, by orthogonality of Q and X̃⊥,

<2> (n− k)σ̂2 = ‖r‖2 = ‖H0y + r̃‖2 = ‖H0y‖2 + ‖r̃‖2 = σ2‖H0ξ‖2 + ‖R‖2.

subspace: X Q = span(q0) X̃⊥

dimension: k 1 n− k − 1

X̃

X⊥

component of y: ŷ = Hy = Xb̂ q0qT0 y = ĉz r̃ = (In − H̃)y

ỹ = H̃y = XB̂ + ĉe1

r = (In −H)y

sum of squares: (qT0 y)
2 = ĉ2κ2 ‖r̃‖2 = (n− k − 1)Ŝ2

‖r‖2 = ((n− k)σ̂2

Solution: Note that

ESR1 =
σqT0 ξ√

σ2‖(In − H̃)ξ‖2/(n− k − 1)

.

By orthogonality of q0 and X̃⊥, the numerator and denominator are
independent, with qT0 ξ ∼ N(0, 1) and ‖(In− H̃)ξ‖2 ∼ χ2

n−k−1, which is
precisely the way to get a tn−k−1 distribution.



(ii) (extra credit) Define

ISR1 := κĉ/σ̂ = q′0y/σ̂.

Show that ISR1 is a monotonely increasing function of ESR1.

Solution: Temporarily write η for qT0 y = ĉκ = σqT0 ξ. Note that ESR1 =
η/Ŝ. From <2>,

(n− k)σ̂2 = ‖r‖2 = η2 + ‖r̃‖2 = η2 + (n− k − 1)Ŝ2.

Thus

ISR1 = η/σ̂ =
η
√
n− k√

η2 + (n− k − 1)Ŝ2

=
ESR1

√
n− k√

ESR2
1 + (n− k − 1)

For each positive constant C, the function t 7→ t/
√
t2 + C is strictly increasing:

it has derivative C(t2 + p)−3/2.

[4] (extra credit) Define

D1 =
‖Xb̂−XB̂‖2

kσ̂2
.

Show that D1 is a monotonely increasing function of |ISR1|.
Solution: From the decomposition of y in the table,

Xb̂−XB̂ = ŷ − (ỹ − ĉe1) = ĉe1 − ĉz = ĉHe1

so that

‖Xb̂−XB̂‖/σ̂ = |ĉ|
√
H11 /σ̂ = |ISR1|

√
H11 /κ.

Some of you noticed that D1 is identically 0 if H11 = 0, which happens
iff He1 = 0, that is, e1 ⊥ X. Equivalently wT

1 = eT1X = 0. In that case the
model asserts that y1 ∼ N(0, σ2). Clearly y1 is then of no use for estimating
the β for which µ = Xβ. The calculations give κ = 1 and z = q0 = e1
and ĉ = η = y1. The statistic ESR1 simplifies to y1/Ŝ. Despite what

https://en.wikipedia.org/wiki/Cook’s_distance

says, there is no way to standardize a random variable that is identically zero
to give it an F distribution.

https://en.wikipedia.org/wiki/Cook's_distance

