- *(1.1) Show that the sigma-field on \mathbb{R}^2 generated by the class \mathcal{E} of all closed rectangles (with sides parallel to the coordinate axes) contains every closed subset of \mathbb{R}^2 . Hint: Consider an infinite sheet of graph paper. Shade in those squares that have nonempty intersection with the closed set. Then buy better graph paper.
- (1.2) Let f_1, \ldots, f_n be functions in $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$, and let μ be a measure on \mathcal{A} . Show that

$$\mu \bigvee_{i} f_{i} \leq \sum_{i} \mu f_{i} \leq \mu \bigvee_{i} f_{i} + \sum_{i \neq j} \mu (f_{i} \wedge f_{j})$$

Due: Thursday 20 January

where \bigvee denotes pointwise maxima of functions and \wedge denotes pointwise minima.

- *(1.3) Suppose T is a function from a set $\mathfrak X$ into a set $\mathfrak Y$, and suppose that $\mathfrak Y$ is equipped with a σ -field $\mathcal B$. Define $\mathcal A$ as the class of sets of the form $T^{-1}B$, with B in $\mathcal B$. Suppose $f\in \mathcal M^+(\mathfrak X,\mathcal A)$. Show that there exists a $\mathcal B\setminus\mathcal B[0,\infty]$ -measurable function g from $\mathcal Y$ into $[-\infty,\infty]$ such that f(x)=g(T(x)), for all x in $\mathcal X$, by following these steps.
 - (i) Show that A is a σ -field on X. It is called the σ -field generated by the map T. It is often denoted by $\sigma(T)$.
 - (ii) Show that $\{f \ge i/2^n\} = T^{-1}B_{i,n}$ for some $B_{i,n}$ in \mathfrak{B} . Define

$$f_n = 2^{-n} \sum_{i=1}^{4^n} \{ f \ge i/2^n \}$$
 and $g_n = 2^{-n} \sum_{i=1}^{4^n} B_{i,n}$.

Show that $f_n(x) = g_n(T(x))$ for all x.

(iii) Define $g(y) = \limsup g_n(y)$ for each y in y. Show that g has the desired property. Question: Why can't we define $g(y) = \lim g_n(y)$?