Please attempt at least the starred problems.

- *(3.1) Let $\{h_n\}$, $\{f_n\}$, and $\{g_n\}$ be sequences of μ -integrable functions that converge μ almost everywhere to limits h, f and g. Suppose $h_n(x) \leq f_n(x) \leq g_n(x)$ for all x. Suppose also that $\mu h_n \to \mu h$ and $\mu g_n \to \mu g$. Adapt the proof of Dominated Convergence to prove that $\mu f_n \to \mu f$.
- *(3.2) Let μ be a finite measure on the Borel sigma-field $\mathcal{B}(\mathcal{X})$ of a metric space \mathcal{X} . Call a set B inner regular if $\mu B = \sup\{\mu F : B \supseteq F \text{ closed }\}$ and outer regular if $\mu B = \inf\{\mu F : B \subseteq G \text{ open }\}$
 - (i) Prove that the class \mathcal{B}_0 of all Borel sets B for which both B and B^c are inner regular is a sigma-field. Deduce that every Borel set is inner regular.

Due: Thursday 3 February

- (ii) Suppose μ is tight: for each $\epsilon>0$ there exists a compact K_{ϵ} such that $\mu K_{\epsilon}^c<\epsilon$. Show that the F in the definition of inner regularity can then be assumed compact.
- (3.3) Suppose a class of sets \mathcal{E} cannot separate a particular pair of points x, y: for every E in \mathcal{E} , either $\{x,y\}\subseteq E$ or $\{x,y\}\subseteq E^c$. Show that $\sigma(\mathcal{E})$ also cannot separate the pair.
- (3.4) Let $A_1, A_2, ...$ be events in a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define $X_n = A_1 + ... + A_n$ and $\sigma_n = \mathbb{P}X_n$. Suppose $\sigma_n \to \infty$ and $\mathbb{P}X_n^2/\sigma_n^2 \to 1$. (Compare with the inequality $\mathbb{P}X_n^2 \geq \sigma_n^2$, which follows from Jensen's inequality.)
 - (i) Show that

$${X_n = 0} \le \frac{(k - X_n)(k + 1 - X_n)}{k(k + 1)}$$

for each positive integer k.

- (ii) By an appropriate choice of k (depending on n) in (i), and a passage to the limit, deduce that $\sum_{1}^{\infty} A_{i} \geq 1$ almost surely. Hint: What is the limit of $\{X_{n}=0\}$ as n tends to infinity?
- (iii) Prove that $\sum_{m=1}^{\infty} A_i \ge 1$ almost surely, for each fixed m. Hint: Show that the two convergence assumptions also hold for the sequence A_m, A_{m+1}, \ldots
- (iv) Deduce that $\mathbb{P}\{\omega \in A_i \text{ for infinitely many } i \} = 1$.
- (v) If $\{B_i\}$ is a sequence of events for which $\sum_i \mathbb{P}B_i = \infty$ and $\mathbb{P}B_iB_j = \mathbb{P}B_i\mathbb{P}B_j$ for $i \neq j$, show that $\mathbb{P}\{\omega \in B_i \text{ for infinitely many } i \} = 1$.