
Chapter 1

Motivation

SECTION 1 offers some reasons for why anyone who uses probability should know about
the measure theoretic approach.

SECTION 2 describes some of the added complications, and some of the compensating
benefits that come with the rigorous treatment of probabilities as measures.

SECTION 3 argues that there are advantages in approaching the study of probability theory
via expectations, interpreted as linear functionals, as the basic concept.

SECTION 4 describes the de Finetti convention of identifying a set with its indicator
function, and of using the same symbol for a probability measure and its corresponding
expectation.

SECTION *5 presents a fair-price interpretation of probability, which emphasizes the
linearity properties of expectations. The interpretation is sometimes a useful guide to
intuition.

1. Why bother with measure theory?

Following the appearance of the little book by Kolmogorov (1933), which set forth
a measure theoretic foundation for probability theory, it has been widely accepted
that probabilities should be studied as special sorts of measures. (More or less
true—see the Notes to the Chapter.) Anyone who wants to understand modern
probability theory will have to learn something about measures and integrals, but it
takes surprisingly little to get started.

For a rigorous treatment of probability, the measure theoretic approach is a vast
improvement over the arguments usually presented in undergraduate courses. Let
me remind you of some difficulties with the typical introduction to probability.

Independence

There are various elementary definitions of independence for random variables. For
example, one can require factorization of distribution functions,

P{X ≤ x, Y ≤ y} = P{X ≤ x} P{Y ≤ y} for all real x, y.

The problem with this definition is that one needs to be able to calculate distribution
functions, which can make it impossible to establish rigorously some desirable
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properties of independence. For example, suppose X1, . . . , X4 are independent
random variables. How would you show that
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by means of distribution functions? Somehow you would need to express events
{Y ≤ y, Z ≤ z} in terms of the events {Xi ≤ xi }, which is not an easy task. (If you
did figure out how to do it, I could easily make up more taxing examples.)

You might also try to define independence via factorization of joint density
functions, but I could invent further examples to make your life miserable, such as
problems where the joint distribution of the random variables are not even given
by densities. And if you could grind out the joint densities, probably by means of
horrible calculations with Jacobians, you might end up with the mistaken impression
that independence had something to do with the smoothness of the transformations.

The difficulty disappears in a measure theoretic treatment, as you will see in
Chapter 4. Facts about independence correspond to facts about product measures.

Discrete versus continuous

Most introductory texts offer proofs of the Tchebychev inequality,

P{|X − µ| ≥ ε} ≤ var(X)/ε2,

where µ denotes the expected value of X . Many texts even offer two proofs, one for
the discrete case and another for the continuous case. Indeed, introductory courses
tend to split into at least two segments. First one establishes all manner of results
for discrete random variables and then one reproves almost the same results for
random variables with densities.

Unnecessary distinctions between discrete and continuous distributions disappear
in a measure theoretic treatment, as you will see in Chapter 3.

Univariate versus multivariate

The unnecessary repetition does not stop with the discrete/continuous dichotomy.
After one masters formulae for functions of a single random variable, the whole
process starts over for several random variables. The univariate definitions acquire a
prefix joint, leading to a whole host of new exercises in multivariate calculus: joint
densities, Jacobians, multiple integrals, joint moment generating functions, and so
on.

Again the distinctions largely disappear in a measure theoretic treatment.
Distributions are just image measures; joint distributions are just image measures for
maps into product spaces; the same definitions and theorems apply in both cases.
One saves a huge amount of unnecessary repetition by recognizing the role of image
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measures (described in Chapter 2) and recognizing joint distributions as measures
on product spaces (described in Chapter 4).

Approximation of distributions

Roughly speaking, the central limit theorem asserts:
If ξ1, . . . , ξn are independent random variables with zero expected values and
variances summing to one, and if none of the ξi makes too large a contribution
to their sum, then ξ1 + . . . + ξn is approximately N (0, 1) distributed.

What exactly does that mean? How can something with a discrete distribution,
such as a standardized Binomial, be approximated by a smooth normal distribution?
The traditional answer (which is sometimes presented explicitly in introductory
texts) involves pointwise convergence of distribution functions of random variables;
but the central limit theorem is seldom established (even in introductory texts) by
checking convergence of distribution functions. Instead, when proofs are given, they
typically involve checking of pointwise convergence for some sort of generating
function. The proof of the equivalence between convergence in distribution and
pointwise convergence of generating functions is usually omitted. The treatment of
convergence in distribution for random vectors is even murkier.

As you will see in Chapter 7, it is far cleaner to start from a definition involving
convergence of expectations of “smooth functions” of the random variables, an
approach that covers convergence in distribution for random variables, random
vectors, and even random elements of metric spaces, all within a single framework.

***
In the long run the measure theoretic approach will save you much work and

help you avoid wasted effort with unnecessary distinctions.

2. The cost and benefit of rigor

In traditional terminology, probabilities are numbers in the range [0, 1] attached to
events, that is, to subsets of a sample space 
. They satisfy the rules

(i) P∅ = 0 and P
 = 1

(ii) for disjoint events A1, A2, . . ., the probability of their union, P (∪i Ai ), is equal
to

∑
i PAi , the sum of the probabilities of the individual events.

When teaching introductory courses, I find that it pays to be a little vague
about the meaning of the dots in (ii), explaining only that it lets us calculate the
probability of an event by breaking it into disjoint pieces whose probabilities are
summed. Probabilities add up in the same way as lengths, areas, volumes, and
masses. The fact that we sometimes need a countable infinity of pieces (as in
calculations involving potentially infinite sequences of coin tosses, for example) is
best passed off as an obvious extension of the method for an arbitrarily large, finite
number of pieces.

In fact the extension is not at all obvious, mathematically speaking. As
explained by Hawkins (1979), the possibility of having the additivity property (ii)
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hold for countable collections of disjoint events, a property known officially as
countable additivity, is one of the great discoveries of modern mathematics. In his
1902 doctoral dissertation, Henri Lebesgue invented a method for defining lengths
of complicated subsets of the real line, in a countably additive way. The definition
has the subtle feature that not every subset has a length. Indeed, under the usual
axioms of set theory, it is impossible to extend the concept of length to all subsets
of the real line while preserving countable additivity.

The same subtlety carries over to probability theory. In general, the collection
of events to which countably additive probabilities are assigned cannot include all
subsets of the sample space. The domain of the set function P (the probability
measure) is usually just a sigma-field, a collection of subsets of 
 with properties
that will be defined in Chapter 2.

Many probabilistic ideas are greatly simplified by reformulation as properties
of sigma-fields. For example, the unhelpful multitude of possible definitions for
independence coalesce nicely into a single concept of independence for sigma-fields.

The sigma-field limitation turns out to be less of a disadvantage than might be
feared. In fact, it has positive advantages when we wish to prove some probabilistic
fact about all events in some sigma-field, A. The obvious line of attack—first find an
explicit representation for the typical member of A, then check the desired property
directly—usually fails. Instead, as you will see in Chapter 2, an indirect approach
often succeeds.

(a) Show directly that the desired property holds for all events in some subclass E

of “simpler sets” from A.

(b) Show that A is the smallest sigma-field for which A ⊇ E.

(c) Show that the desired property is preserved under various set theoretic
operations. For example, it might be possible to show that if two events have
the property then so does their union.

(d) Deduce from (c) that the collection B of all events with the property forms
a sigma-field of subsets of 
. That is, B is a sigma-field, which, by (a), has
the property B ⊇ E.

(e) Conclude from (b) and (d) that B ⊇ A. That is, the property holds for all
members of A.

Remark. Don’t worry about the details for the moment. I include the outline
in this Chapter just to give the flavor of a typical measure theoretic proof. I have
found that some students have trouble adapting to this style of argument.

The indirect argument might seem complicated, but, with the help of a few key
theorems, it actually becomes routine. In the literature, it is not unusual to see
applications abbreviated to a remark like “a simple generating class argument shows
. . . ,” with the reader left to fill in the routine details.

Lebesgue applied his definition of length (now known as Lebesgue measure)
to the construction of an integral, extending and improving on the Riemann
integral. Subsequent generalizations of Lebesgue’s concept of measure (as in
the 1913 paper of Radon and other developments described in the Epilogue to
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Hawkins 1979) eventually opened the way for Kolmogorov to identify probabilities
with measures on sigma-fields of events on general sample spaces. From the Preface
to Kolmogorov (1933), in the 1950 translation by Morrison:

The purpose of this monograph is to give an axiomatic foundation for the
theory of probability. The author set himself the task of putting in their natural
place, among the general notions of modern mathematics, the basic concepts of
probability theory—concepts which until recently were considered to be quite
peculiar.

This task would have been a rather hopeless one before the introduction
of Lebesgue’s theories of measure and integration. However, after Lebesgue’s
publication of his investigations, the analogies between measure of a set and
probability of an event, and between integral of a function and mathematical
expectation of a random variable, became apparent. These analogies allowed of
further extensions; thus, for example, various properties of independent random
variables were seen to be in complete analogy with the corresponding properties
of orthogonal functions. But if probability theory was to be based on the above
analogies, it still was necessary to make the theories of measure and integration
independent of the geometric elements which were in the foreground with
Lebesgue. This has been done by Fréchet.

While a conception of probability theory based on the above general
viewpoints has been current for some time among certain mathematicians, there
was lacking a complete exposition of the whole system, free of extraneous
complications. (Cf., however, the book by Fréchet . . . )

Kolmogorov identified random variables with a class of real-valued functions
(the measurable functions) possessing properties allowing them to coexist com-
fortably with the sigma-field. Thereby he was also able to identify the expectation
operation as a special case of integration with respect to a measure. For the newly
restricted class of random variables, in addition to the traditional properties

(i) E(c1 X1 + c2 X2) = c1E(X1) + c2E(X2), for constants c1 and c2,

(ii) E(X) ≥ E(Y ) if X ≥ Y ,

he could benefit from further properties implied by the countable additivity of the
probability measure.

As with the sigma-field requirement for events, the measurability restriction on
the random variables came with benefits. In modern terminology, no longer was E

just an increasing linear functional on the space of real random variables (with
some restrictions to avoid problems with infinities), but also it had acquired some
continuity properties, making possible a rigorous treatment of limiting operations in
probability theory.

3. Where to start: probabilities or expectations?

From the example set by Lebesgue and Kolmogorov, it would seem natural to start
with probabilities of events, then extend, via the operation of integration, to the study
of expectations of random variables. Indeed, in many parts of the mathematical
world that is the way it goes: probabilities are the basic quantities, from which
expectations of random variables are derived by various approximation arguments.
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The apparently natural approach is by no means the only possibility, as anyone
brought up on the works of the fictitious French author Bourbaki could affirm.
(The treatment of measure theory, culminating with Bourbaki 1969, started from
integrals defined as linear functionals on appropriate spaces of functions.) Moreover,
historically speaking, expectation has a strong claim to being the preferred starting
point for a theory of probability. For instance, in his discussion of the 1657 book
Calculating in Games of Chance by Christian Huygens, Hacking (1978, page 97)
commented:

The fair prices worked out by Huygens are just what we would call the
expectations of the corresponding gambles. His approach made expectation a
more basic concept than probability, and this remained so for about a century.

The fair price interpretation is sketched in Section 5.
The measure theoretic history of integrals as linear functionals also extends

back to the early years of the twentieth century, starting with Daniell (1918), who
developed a general theory of integration via extension of linear functionals from
small spaces of functions to larger spaces. It is also significant that, in one of the
greatest triumphs of measure theory, Wiener (1923, Section 10) defined what is now
known as Wiener measure (thereby providing a rigorous basis for the mathematical
theory of Brownian motion) as an averaging operation for functionals defined on
Brownian motion paths, citing Daniell (1919) for the basic extension theorem.

There are even better reasons than historical precedent for working with expec-
tations as the basic concept. Whittle (1992), in the Preface to an elegant, intermediate
level treatment of Probability via Expectations, presented some arguments:

(i) To begin with, people probably have a better intuition for what is meant by
an ‘average value’ than for what is meant by a ‘probability.’

(ii) Certain important topics, such as optimization and approximation problems,
can be introduced and treated very quickly, just because they are phrased in
terms of expectations.

(iii) Most elementary treatments are bedeviled by the apparent need to ring
the changes of a particular proof or discussion for all the special cases of
continuous or discrete distribution, scalar or vector variables, etc. In the
expectations approach these are indeed seen as special cases, which can be
treated with uniformity and economy.

His list continued. I would add that:

(a) It is often easier to work with the linearity properties of integrals than with
the additivity properties of measures. For example, many useful probability
inequalities are but thinly disguised consequences of pointwise inequalities,
translated into probability form by the linearity and increasing properties of
expectations.

(b) The linear functional approach, via expectations, can save needless repetition
of arguments. Some theorems about probability measures, as set functions,
are just special cases of more general results about expectations.
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(c) When constructing new probability measures, we save work by defining
the integral of measurable functions directly, rather than passing through
the preliminary step of building the set function then establishing theorems
about the corresponding integrals. As you will see repeatedly, definitions and
theorems sometimes collapse into a single operation when expressed directly
in terms of expectations, or integrals.

***
I will explain the essentials of measure theory in Chapter 2, starting from the

traditional set-function approach but working as quickly as I can towards systematic
use of expectations.

4. The de Finetti notation

The advantages of treating expectation as the basic concept are accentuated by
the use of an elegant notation strongly advocated by de Finetti (1972, 1974).
Knowing that many traditionally trained probabilists and statisticians find the
notation shocking, I will introduce it slowly, in an effort to explain why it is worth
at least a consideration. (Immediate enthusiastic acceptance is more than I could
hope for.)

Ordinary algebra is easier than Boolean algebra. The correspondence A ↔ IA

between subsets A of a fixed set X and their indicator functions,

IA(x) =
{

1 if x ∈ A,
0 if x ∈ Ac,

transforms Boolean algebra into ordinary pointwise algebra with functions. I claim
that probability theory becomes easier if one works systematically with expectations
of indicator functions, EIA, rather than with the corresponding probabilities of
events.

Let me start with the assertions about algebra and Boolean algebra. The
operations of union and intersection correspond to pointwise maxima (denoted by
max or the symbol ∨) and pointwise minima (denoted by min or the symbol ∧), or
pointwise products:

I∪i Ai (x) =
∨

i

IAi (x) and I∩i Ai (x) =
∧

i

IAi (x) =
∏

i

IAi (x).

Complements correspond to subtraction from one: IAc(x) = 1 − IA(x). Derived
operations, such as the set theoretic difference A\B := A ∩ Bc and the symmetric
difference, A�B := (A\B) ∪ (B\A), also have simple algebraic counterparts:

IA\B(x) = (IA(x) − IB(x))+ := max
(
0, IA(x) − IB(x)

)
,

IA�B(x) = |IA(x) − IB(x)| .
To check these identities, just note that the functions take only the values 0 and 1,
then determine which combinations of indicator values give a 1. For example,
|IA(x) − IB(x)| takes the value 1 when exactly one of IA(x) and IB(x) equals 1.
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The algebra looks a little cleaner if we omit the argument x . For example, the
horrendous set theoretic relationship(∩n

i=1 Ai
)
�

(∩n
i=1 Bi

) ⊆ ∪n
i=1 (Ai�Bi )

corresponds to the pointwise inequality∣∣∏
i IAi − ∏

i IBi

∣∣ ≤ max
i

∣∣IAi − IBi

∣∣ ,
whose verification is easy: when the right-hand side takes the value 1 the inequality
is trivial, because the left-hand side can take only the values 0 or 1; and when
right-hand side takes the value 0, we have IAi = IBi for all i , which makes the
left-hand side zero.

<1> Example. One could establish an identity such as

(A�B)�(C�D) = A� (B�(C�D))

by expanding both sides into a union of many terms. It is easier to note the pattern
for indicator functions. The set A�B is the region where IA + IB takes an odd value
(that is, the value 1); and (A�B)�C is the region where (IA + IB)+ IC takes an odd
value. And so on. In fact both sides of the set theoretic identity equal the region
where IA + IB + IC + ID takes an odd value. Associativity of set theoretic differences
is a consequence of associativity of pointwise addition.�

<2> Example. The lim sup of a sequence of sets {An : n ∈ N} is defined as

lim sup
n

An :=
∞⋂

n=1

⋃
i≥n

Ai .

That is, the lim sup consists of those x for which, to each n there exists an i ≥ n
such that x ∈ Ai . Equivalently, it consists of those x for which x ∈ Ai for infinitely
many i . In other words,

Ilim supn An = lim sup
n

IAn .

Do you really need to learn the new concept of the lim sup of a sequence
of sets? Theorems that work for lim sups of sequences of functions automatically
carry over to theorems about sets. There is no need to prove everything twice. The
correspondence between sets and their indicators saves us from unnecessary work.�

After some repetition, it becomes tiresome to have to keep writing the I for
the indicator function. It would be much easier to write something like Ã in place
of IA. The indicator of the lim sup of a sequence of sets would then be written
lim supn Ãn , with only the tilde to remind us that we are referring to functions. But
why do we need reminding? As the example showed, the concept for the lim sup
of sets is really just a special case of the concept for sequences of functions. Why
preserve a distinction that hardly matters?

There is a well established tradition in Mathematics for choosing notation that
eliminates inessential distinctions. For example, we use the same symbol 3 for the
natural number and the real number, writing 3 + 6 = 9 as an assertion both about
addition of natural numbers and about addition of real numbers.
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It does not matter if we cannot tell immediately which
6natural

3real 6real

3natural

9real

+real

9natural

+natural

interpretation is intended, because we know there is a one-to-one
correspondence between natural numbers and a subset of the real
numbers, which preserves all the properties of interest. Formally,
there is a map ψ : N → R for which

ψ(x +natural y) = ψ(x) +real ψ(y) for all x, y in N,

with analogous equalities for other operations. (Notice that I even
took care to distinguish between addition as a function from N × N

to N and as a function from R × R to R.) The map ψ is an
isomorphism between N and a subset of R.

Remark. Of course there are some situations where we need to distinguish
between a natural number and its real counterpart. For example, it would be highly
confusing to use indistinguishable symbols when first developing the properties of the
real number system from the properties of the natural numbers. Also, some computer
languages get very upset when a function that expects a floating point argument is
fed an integer variable; some languages even insist on an explicit conversion between
types.

We are faced with a similar overabundance of notation in the correspondence
between sets and their indicator functions. Formally, and traditionally, we have a
map A �→ IA from sets into a subset of the nonnegative real functions. The map
preserves the important operations. It is firmly in the Mathematical tradition that
we should follow de Finetti’s suggestion and use the same symbol for a set and its
indicator function.

Remark. A very similar convention has been advocated by the renowned
computer scientist, Donald Knuth, in an expository article (Knuth 1992). He attributed
the idea to Kenneth Iversen, the inventor of the programming language APL.

In de Finetti’s notation the assertion from Example <2> becomes

lim sup An = lim sup An,

a fact that is quite easy to remember. The theorem about lim sups of sequences
of sets has become incorporated into the notation; we have one less theorem to
remember.

The second piece of de Finetti notation is suggested by the same logic that
encourages us to replace +natural and +real by the single addition symbol: use the
same symbol when extending the domain of definition of a function. For example,
the symbol “sin” denotes both the function defined on the real line and its extension
to the complex domain. More generally, if we have a function g with domain G0,
which can be identified with a subset G̃0 of some G̃ via a correspondence x ↔ x̃ ,
and if g̃ is a function on G̃ for which g̃(x̃) = g(x) for x in G0, then why not write g
instead of g̃ for the function with the larger domain?

With probability theory we often use P to denote a probability measure, as a
map from a class A (a sigma-field) of subsets of some 
 into the subinterval [0, 1]
of the real line. The correspondence A ↔ Ã := IA, between a set A and its indicator
function Ã, establishes a correspondence between A and a subset of the collection of
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random variables on 
. The expectation maps random variables into real numbers,
in such a way that E( Ã) = P(A). This line of thinking leads us to de Finetti’s
second suggestion: use the same symbol for expectation and probability measure,
writing PX instead of EX , and so on.

The de Finetti notation has an immediate advantage when we deal with several
probability measures, P, Q, . . . simultaneously. Instead of having to invent new
symbols EP, EQ, . . . , we reuse P for the expectation corresponding to P, and so on.

Remark. You might have the concern that you will not be able to tell whether
PA refers to the probability of an event or the expected value of the corresponding
indicator function. The ambiguity should not matter. Both interpretations give the
same number; you will never be faced with a choice between two different values
when choosing an interpretation. If this ambivalence worries you, I would suggest
going systematically with the expectation/indicator function interpretation. It will
never lead you astray.

<3> Example. For a finite collection of events A1, . . . , An , the so-called method of
inclusion and exclusion asserts that the probability of the union ∪i≤n Ai equals∑

i

PAi −
∑
i �= j

P(Ai ∩Aj )+
∑
i, j,k

{i, j, k distinct}P(Ai ∩Aj ∩Ak)−. . .±P(A1∩A2∩. . .∩An).

The equality comes by taking expectations on both sides of an identity for (indicator)
functions,

∪i≤n Ai =
∑

i

Ai −
∑
i �= j

Ai Aj +
∑
i, j,k

{i, j, k distinct}Ai Aj Ak − . . . ± A1 A2 . . . An.

The right-hand side of this identity is just the expanded version of 1−∏
i≤n (1 − Ai ).

The identity is equivalent to

1 − ∪i≤n Ai =
∏
i≤n

(1 − Ai ) ,

which presents two ways of expressing the indicator function of ∩i≤n Ac
i . See

Problem [1] for a generalization.�
<4> Example. Consider Tchebychev’s inequality, P{|X − µ| ≥ ε} ≤ var(X)/ε2, for

each ε > 0, and each random variable X with expected value µ := PX and finite
variance, var(X) := P (X − µ)2. On the left-hand side of the inequality we have
the probability of an event. Or is it the expectation of an indicator function?
Either interpretation is correct, but the second is more helpful. The inequality is
a consequence of the increasing property for expectations invoked for a pair of
functions, {|X − µ| ≥ ε} ≤ (X − µ)2/ε2. The indicator function on the left-hand
side takes only the values 0 and 1. The quadratic function on the right-hand side is
nonnegative, and is ≥ 1 whenever the left-hand side equals 1.�

***
For the remainder of the book, I will be using the same symbol for a set and

its indicator function, and writing P instead of E for expectation.

Remark. For me, the most compelling reason to adopt the de Finetti notation,
and work with P as a linear functional defined for random variables, was not that
I would save on symbols, nor any of the other good reasons listed at the end of
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Section 3. Instead, I favor the notation because, once the initial shock of seeing old
symbols used in new ways wore off, it made probability theory easier. I can truly
claim to have gained better insight into classical techniques through the mere fact of
translating them into the new notation. I even find it easier to invent new arguments
when working with a notation that encourages thinking in terms of linearity, and
which does not overemphasize the special role for expectations of functions that take
only the values 0 and 1 by according them a different symbol.

The hope that I might convince probability users of some of the advantages
of de Finetti notation was, in fact, one of my motivations for originally deciding to
write yet another book about an old subject.

*5. Fair prices

For the understanding of this book the interpretation of probability as a model for
uncertainty is not essential. You could study it purely as a piece of mathematics,
divorced from any interpretation but then you would forgo much of the intuition
that accompanies the various interpretations.

The most widely accepted view interprets probabilities and expectations as
long run averages, anticipating the formal laws of large numbers that make precise
a sense in which averages should settle down to expectations over a long sequence
of independent trials. As an aid to intuition I also like another interpretation, which
does not depend on a preliminary concept of independence, and which concentrates
attention on the linearity properties of expectations.

Consider a situation—a bet if you will–where you stand to receive an uncertain
return X . You could think of X as a random variable, a real-valued function on a
set 
. For the moment forget about any probability measure on 
. Suppose you
consider p(X) to be the fair price to pay now in order to receive X at some later
time. (By fair I mean that you should be prepared to take either side of the bet. In
particular, you should be prepared to accept a payment p(X) from me now in return
for giving me an amount X later.) What properties should p(·) have?

Remark. As noted in Section 3, the value p(X) corresponds to an expected
value of the random variable X . If you already know about the possibility of infinite
expectations, you will realize that I would have to impose some restrictions on the
class of random variables for which fair prices are defined, if I were seriously trying
to construct a rigorous system of axioms. It would suffice to restrict the argument to
bounded random variables.

Your net return will be the random quantity X ′(ω) := X (ω) − p(X). Call
the random variable X ′ a fair return, the net return from a fair trade. Unless you
start worrying about utilities—in which case you might consult Savage (1954) or
Ferguson (1967, Section 1.4)—you should find the following properties reasonable.

(i) fair + fair = fair. That is, if you consider p(X) fair for X and p(Y ) fair
for Y then you should be prepared to make both bets, paying p(X) + p(Y ) to
receive X + Y .

(ii) constant × fair = fair. That is, you shouldn’t object if I suggest you pay
2p(X) to receive 2X (actually, that particular example is a special case of (i))
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or 3.76p(X) to receive 3.76X , or −p(X) to receive −X . The last example
corresponds to willingness to take either side of a fair bet. In general, to
receive cX you should pay cp(X), for constant c.

Properties (i) and (ii) imply that the collection of all fair returns is a vector space.
There is a third reasonable property that goes by several names: coherency or

nonexistence of a Dutch book, the no-arbitrage requirement, or the no-free-lunch
principle:

(iii) There is no fair return X ′ for which X ′(ω) ≥ 0 for all ω, with strict inequality
for at least one ω.

(Students of decision theory might be reminded of the the concept of admissibility.)
If you were to declare such an X ′ to be fair I would be delighted to offer you the
opportunity to receive a net return of −10100 X ′. I couldn’t lose.

<5> Lemma. Properties (i), (ii), and (iii) imply that p(·) is an increasing linear
functional on random variables. The fair returns are those random variables for
which p(X) = 0.

Proof. For constants α and β, and random variables X and Y with fair prices p(X)

and p(Y ), consider the combined effect of the following fair bets:

you pay me αp(X) to receive αX

you pay me βp(Y ) to receive βY

I pay you p(αX + βY ) to receive (αX + βY ).

Your net return is a constant,

c = p(αX + βY ) − αp(X) − βp(Y ).

If c > 0 you violate (iii); if c < 0 take the other side of the bet to violate (iii). That
proves linearity.

To prove that p(·) is increasing, suppose X (ω) ≥ Y (ω) for all ω. If you claim
that p(X) < p(Y ) then I would be happy for you to accept the bet that delivers

(Y − p(Y )) − (X − p(X)) = −(X − Y ) − (p(Y ) − p(X)) ,

which is always < 0.
If both X and X − p(X) are considered fair, then the constant return p(X) =

X − (X − p(X)) is fair, which would contradict (iii) unless p(X) = 0.�
As a special case, consider the bet that returns 1 if an event F occurs, and 0

otherwise. If you identify the event F with the random variable taking the value 1
on F and 0 on Fc (that is, the indicator of the event F), then it follows directly
from Lemma <5> that p(·) is additive: p(F1 ∪ F2) = p(F1) + p(F2) for disjoint
events F1 and F2. That is, p defines a finitely additive set-function on events. The
set function p(·) has most of the properties required of a probability measure. As
an exercise you might show that p(∅) = 0 and p(
) = 1.

Contingent bets

Things become much more interesting if you are prepared to make a bet to receive an
amount X but only when some event F occurs. That is, the bet is made contingent
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on the occurrence of F . Typically, knowledge of the occurrence of F should change
the fair price, which we could denote by p(X | F). Expressed more compactly,
the bet that returns (X − p(X | F)) F is fair. The indicator function F ensures that
money changes hands only when F occurs.

<6> Lemma. If 
 is partitioned into disjoint events F1, . . . , Fk , and X is a random
variable, then p(X) = ∑k

i=1 p(Fi )p(X | Fi ).

Proof. For a single Fi , argue by linearity that

0 = p (X Fi − p(X | Fi )Fi ) = p(X Fi ) − p(X | Fi )p(Fi ).

Sum over i , using linearity again, together with the fact that X = ∑
i X Fi , to deduce

that p(X) = ∑
i p(X Fi ) = ∑

i p(Fi )p(X | Fi ), as asserted.�
Why should we restrict the Lemma to finite partitions? If we allowed countable

partitions we would get the countable additivity property—the key requirement in
the theory of measures. I would be suspicious of such an extension of the simple
argument for finite partitions. It makes a tacit assumption that a combination of
countably many fair bets is again fair. If we accept that assumption, then why not
accept that arbitrary combinations of fair events are fair? For uncountably infinite
collections we would run into awkward contradictions. For example, suppose ω is
generated from a uniform distribution on [0, 1]. Let Xt be the random variable that
returns 1 if ω = t and 0 otherwise. By symmetry one might expect p(Xt ) = c for
some constant c that doesn’t depend on t . But there can be no c for which

1 = p(1) = p
(∑

0≤t≤1 Xt
) ?= ∑

0≤t≤1 p(Xt ) =
{

0 if c = 0
±∞ if c �= 0

Perhaps our intuition about the infinite rests on shaky analogies with the finite.

Remark. I do not insist that probabilities must be interpreted as fair prices, just
as I do not accept that all probabilities must be interpreted as assertions about long
run frequencies. It is convenient that both interpretations lead to almost the same
mathematical formalism. You are free to join either camp, or both, and still play by
the same probability rules.

6. Problems

[1] Let A1, . . . , AN be events in a probability space (
, F, P). For each subset J
of {1, 2, . . . , N } write AJ for ∩i∈J Ai . Define Sk := ∑

|J |=k PAJ , where |J | de-
notes the number of indices in J . For 0 ≤ m ≤ N show that the probability
P{exactly m of the Ai ’s occur} equals

(m
m

)
Sm − (m+1

m

)
Sm+1 + . . . ± (N

m

)
SN . Hint: For

a dummy variable z, show that
∏N

i=1(Ac
i + z Ai ) = ∑n

k=0
∑

|J |=k(z − 1)k AJ . Expand
the left-hand side, take expectations, then interpret the coefficient of zm .

[2] Rederive the assertion of Lemma <6> by consideration of the net return from the
following system of bets: (i) for each i , pay ci p(Fi ) in order to receive ci if Fi

occurs, where ci := p(X | Fi ); (ii) pay −p(X) in order to receive −X ; (iii) for
each i , make a bet contingent on Fi , paying ci (if Fi occurs) to receive X .
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[3] For an increasing sequence of events {An : n ∈ N} with union A, show PAn ↑ PA.

7. Notes

See Dubins & Savage (1964) for an illustration of what is possible in a theory of
probability without countable additivity.

The ideas leading up to Lebesgue’s creation of his integral are described in
fascinating detail in the excellent book of Hawkins (1979), which has been the
starting point for most of my forays into the history of measure theory. Lebesgue
first developed his new definition of the integral for his doctoral dissertation
(Lebesgue 1902), then presented parts of his theory in the 1902–1903 Peccot course
of lectures (Lebesgue 1904). The 1928 revision of the 1904 volume greatly expanded
the coverage, including a treatment of the more general (Lebesgue-)Stieltjes integral.
See also Lebesgue (1926), for a clear description of some of the ideas involved in
the development of measure theory, and the Note Historique of Bourbaki (1969), for
a discussion of later developments.

Of course it is a vast oversimplification to imagine that probability theory
abruptly became a specialized branch of measure theory in 1933. As Kolmogorov
himself made clear, the crucial idea was the measure theory of Lebesgue. Kol-
mogorov’s little book was significant not just for “putting in their natural place,
among the general notions of modern mathematics, the basic concepts of probability
theory”, but also for adding new ideas, such as probability distributions in infinite
dimensional spaces (reinventing results of Daniell 1919) and a general theory of
conditional probabilities and conditional expectations.

Measure theoretic ideas were used in probability theory well before 1933.
For example, in the Note at the end of Lévy (1925) there was a clear statement
of the countable additivity requirement for probabilities, but Lévy did not adopt
the complete measure theoretic formalism; and Khinchin & Kolmogorov (1925)
explicitly constructed their random variables as functions on [0, 1], in order to avail
themselves of the properties of Lebesgue measure.

It is also not true that acceptance of the measure theoretic foundation was total
and immediate. For example, eight years after Kolmogorov’s book appeared, von
Mises (1941, page 198) asserted (emphasis in the original):

In recapitulating this paragraph I may say: First, the axioms of Kolmogorov
are concerned with the distribution function within one kollektiv and are
supplementary to my theory, not a substitute for it. Second, using the notion of
measure zero in an absolute way without reference to the arbitrarily assumed
measure system, leads to essential inconsistencies.

See also the argument for the measure theoretic framework in the accompanying
paper by Doob (1941), and the comments by both authors that follow (von Mises &
Doob 1941).

For more about Kolmogorov’s pivotal role in the history of modern probability,
see: Shiryaev (2000), and the other articles in the same collection; the memorial
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articles in the Annals of Probability, volume 17 (1989); and von Plato (1994), which
also contains discussions of the work of von Mises and de Finetti.
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Shiryaev, A. N. (2000), Andreĭ Nikolaevich Kolmogorov: a biographical sketch
of his life and creative paths, in ‘Kolmogorov in Perspective’, American
Mathematical Society/London Mathematical Society.

von Mises, R. (1941), ‘On the foundations of probability and statistics’, Annals of
Mathematical Statistics 12, 191–205.

von Mises, R. & Doob, J. L. (1941), ‘Discussion of papers on probability theory’,
Annals of Mathematical Statistics 12, 215–217.

von Plato, J. (1994), Creating Modern Probability: its Mathematics, Physics and
Philosophy in Historical Perspective, Cambridge University Press.

Whittle, P. (1992), Probability via Expectation, third edn, Springer-Verlag, New York.
First edition 1970, under the title “Probability”.

Wiener, N. (1923), ‘Differential-space’, Journal of Mathematics and Physics 2, 131–
174. Reprinted in Selected papers of Norbert Wiener, MIT Press, 1964.


