
Chapter 4

Product spaces and independence

1. Product measures

<1> Definition. Let X1, . . . ,Xn be sets equipped with sigma-fields A1, . . . , An . The
set of all ordered n-tuples (x1, . . . , xn), with xi ∈ Xi for each i is denoted by
X1 × . . . × Xn or Xi≤n Xi . It is called the product of the {Xi }. A set of the form

A1 × . . . × An = {(x1, . . . , xn) ∈ X1 × . . . × Xn : xi ∈ Ai for each i },
with Ai ∈ Ai for each i , is called a measurable rectangle. The product sigma-field
A1 ⊗ . . . ⊗ An on X1 × . . . × Xn is defined to be the sigma-field generated by all
measurable rectangles.

Remark. Even if n equals 2 and X1 = X2 = R, there is is no presumption
that either A1 or A2 is an interval—a measurable rectangle might be composed of
many disjoint pieces. The symbol ⊗ in place of × is intended as a reminder that
A1 ⊗ A2 consists of more than the set of all measurable rectangles A1 × A2.

To keep the notation simple, I will mostly consider only measures on a
product of two spaces, (X, A) and (Y, B). Sometimes I will abbreviate symbols like
M+(X × Y, A ⊗ B) to M+(X × Y), with the product sigma-field assumed, or to
M+(A ⊗ B), with the product space assumed. Similarly, Mbdd(A ⊗ B) will be an
abbreviation for Mbdd(X × Y, A ⊗ B), the vector space of all bounded, real-valued,
product measurable functions on X × Y.

Suppose µ is a finite measure on A and ν is a finite measure on B. The next
theorem, which is usually called Fubini’s Theorem, asserts existence of a finite
measure on A ⊗ B whose integrals can be calculated by iterated integrals with
respect to µ and ν.

Remember the notation µx h(x, y) for what would be written
∫

h(x, y) µ(dx) in
traditional notation, the integral of h(·, y) with respect to µ with y held fixed.

<2> Theorem. For finite measures µ and ν, there is a uniquely determined finite
measure � on A ⊗ B for which

(i) �(A × B) = (µA)(νB) for each measurable rectangle.

Moreover, for each h in Mbdd(A ⊗ B),
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(ii) the map x �→ h(x, y) is A-measurable for each fixed y and the map
y �→ h(x, y) is B-measurable for each fixed x

(iii) the map x �→ ν yh(x, y) is A-measurable and the map y �→ µx h(x, y) is
B-measurable

(iv) µx
(
ν yh(x, y)

) = ν y
(
µx h(x, y)

)
(v) the common value in (iv) is equal to �h

Remark. Properties (ii) and (iii) are necessary requirements for the iterated
integrals in (iv) to make sense.

Proof. The method of proof is a case study in the use of the generating class
argument for λ-spaces, as developed in Section 2.11. The main idea is to define the
measure � by means of the iterated integral

Write H for the set of all functions h in Mbdd(A⊗B) for which (ii), (iii), and (iv)
hold. It is very easy to check that H is a λ-space. For example, if hn ∈ H and hn ↑ h
with h bounded then, by Monotone Convergence (for increasing sequences bounded
from below by an integrable function), ν yh(x, y) = limn→∞ ν yhn(x, y), which
establishes property (iii) for h. Similarly, four appeals to Monotone Convergence
lead from the equality of iterated integrals for each hn to the corresponding equality
for h.

It is even easier to show that H ⊇ G, where G denotes the set of all indicator
functions g(x, y) := {x ∈ A, y ∈ B} of measurable rectangles. For example,
y �→ g(x, y) is either the zero function (if x /∈ A) or the indicator of the set B (if
x ∈ A), and ν y g(x, y) = {x ∈ A}(νB).

The set G is stable under pairwise products and it generates A ⊗ B. It follows
by the theorems from Section 2.11 that H = Mbdd(A ⊗ B).

Now consider a function f in M+(A ⊗ B). The truncated function fn :=
min(n, f ) belongs to Mbdd for each n in N, which shows that µx

(
ν y fn(x, y)

) =
ν y

(
µx fn(x, y)

)
. Four appeals to Monotone Convergence lead to equality of the

analogous iterated integrals for f . Thus

�( f ) := µx
(
ν y f (x, y)

) = ν y
(
µx f (x, y)

)
is a well defined map from M+(A ⊗ B) to [0, ∞]. It is easily checked that � is an
increasing, linear functional with the Monotone Convergence property, that is, that
� corresponds to an integral with respect to a measure on A ⊗ B.

An appeal to the π–λ theorem, with the set of measurable rectangles as the
generating class, establishes the uniquenesss.�

The measure � is called the product of the measures µ and ν, and is denoted
by µ ⊗ ν.

Theorem <2> has an immediate extension to products of sigma-finite measures.
(Remember that sigma-finiteness of µ means that there is a partition of X into
countably many A-measurable sets, X = ∪i∈NXi , with µXi < ∞ for each i .) The
extension is usually attributed to Tonelli.
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<3> Tonelli Theorem. If µ is a sigma-finite measure on (X, A), and ν is a sigma-
finite measure on (Y, B), then there is a unique sigma-finite measure µ⊗ν on A⊗B

with the following properties. For each f in M+ (X × Y, A ⊗ B),

(i) y �→ f (x, y) is B-measurable for each fixed x , and x �→ f (x, y) is A-
measurable for each fixed y;

(ii) x �→ λy f (x, y) is A-measurable, and y �→ µx f (x, y) is B-measurable;

(iii) (µ ⊗ ν) f = µx (λy f (x, y)) = λy (µx f (x, y)).

Proof. Write µi for the finite measure obtained by restricting µ to Xi . Define νj

analogously. Invoke Theorem <2> to construct each µi ⊗ νj then define (µ ⊗ ν) f
as

∑
i, j∈N

µi ⊗ νj f . And so on.�
See Problem [Leb.counting] for an example emphasizing the need for

sigma-finiteness.

<4> Example. Let µ be a sigma-finite measure on A. For f in M+(X, A) and each
constant p ≥ 1, we can express µ ( f p) as an iterated integral,

µ
(

f p
) = µx

(
my

(
py p−1{y : f (x) > y > 0}

))
,

where m denotes Lebesgue measure on B(R). It is not hard—although a little
messy, as you will see from Problem [special.case]—to show that the function
g(x, y) := py p−1{ f (x) > y > 0}, on X × R, is product measurable. Tonelli lets us
reverse the order of integration. Abbreviating µx {y : f (x) > y > 0} to µ{ f > y}
and writing the Lebesgue integral in traditional notational, we then conclude that

µ
(

f p
) = p

∫ ∞

0
y p−1µ{ f > y} dy.

In particular, if µ ( f p) < ∞ then µ{ f > y} must decrease to zero faster than y−p as
y → ∞.�

The definition of product measures, and the Tonelli Theorem, can be extended
to collections of more than two sigma-finite measures.

<5> Example. Apparently every mathematician is supposed to know the value of the
constant C := ∫ ∞

−∞ exp(−x2) dx . With the help of Tonelli, you too will discover
that C = √

π . Let m denote Lebesgue measure on B(R) and m2 = m ⊗ m denote
Lebesgue measure on B(R2). Then

C2 = mxmy exp(−x2 − y2) = m
x,y
2

(
mz{x2 + y2 ≤ z}e−z

)
.

The m2 measure of the ball {x2 + y2 ≤ z}, for fixed positive z, equals π z. A change
in the order of integration leaves mz

(
π{0 ≤ z}ze−z

) = π as the value for C2.�
The Tonelli Theorem is often invoked to establish integrability of a product

measurable (extended-) real-valued function f , by showing that at least one of
the iterated integrals µx (ν y | f (x, y)|) or ν y (µx | f (x, y)|) is finite. In that case, the
Theorem also asserts equality for pairs of iterated integrals for the positive and
negative parts of the function:

µxν y f +(x, y) = ν yµx f +(x, y) < ∞,
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with a similar assertion for f −. As a consequence, the A-measurable set

Nµ := {x : ν y f +(x, y) = ∞ or ν y f −(x, y) = ∞}
has zero µ-measure, and the analogously defined B-measurable set Nν has zero
ν measure. For x /∈ Nµ, the integral ν y f (x, y) := ν y f +(x, y) − ν y f −(x, y) is
well defined and finite. If we replace f by the product measurable function
f̃ (x, y) := f (x, y){x /∈ Nµ, y /∈ Nν}, the negligible sets of bad behavior disappear,
leaving an assertion similar to the Tonelli Theorem but for integrable functions taking
both positive and negative values. Less formally, we can rely on the convention that
a function can be left undefined on a negligible set without affecting its integrability
properties.

<6> Corollary (Fubini Theorem). For sigma-finite measures µ and ν, and a product
measurable function f with (µ ⊗ ν) | f | < ∞,

(i) y �→ f (x, y) is B-measurable for each fixed x ; and x �→ f (x, y) is
A-measurable for each fixed y;

(ii) the integral ν y f (x, y) is well defined and finite µ almost everywhere, and
x �→ ν y f (x, y) is µ-integrable; the integral µx f (x, y) is well defined and
finite ν almost everywhere, and y �→ µx f (x, y) is ν-integrable;

(iii) (µ ⊗ ν) f = µx (ν y f (x, y)) = ν y (µx f (x, y)).

Remarks. If we add similar almost sure qualifiers to assertion (i), then the
Fubini Theorem also works for functions that are measurable with respect to F, the
µ ⊗ ν completion of the product sigma-field. The result is easy to deduce from
the Theorem as stated, because each F-measurable function f can be sandwiched
between two product measurable functions, f0 ≤ f ≤ f1, with f0 = f1, a.e. [µ ⊗ ν].
Many authors work with the slightly more general version, stated for the completion,
but then the Tonelli Theorem also needs almost sure qualifiers.

Without integrability of the function f , the Fubini Theorem can fail, as shown
by Problem [plus.minus]. Strictly speaking, the sigma-finiteness of the measures
is not essential, but little is gained by eliminating it from the assumptions of the
Theorem. As explained in Chapter 4, under the traditional definition of products for
general measures, integrable functions must almost concentrate on a countable union
of measurable rectangles each with finite product measure.

<7> Example. Recall from Section 2.2 the definition of the distribution function FX

and its corresponding quantile function for a random variable X :

FX (x) = P{X ≤ x} for x ∈ R,

qX (u) = inf{t : FX (t) ≥ u} for 0 < u < 1.

The quantile function is almost an inverse to the distribution function, in the sense
that FX (x) ≥ u if and only if qX (u) ≤ x . As a random variable on (0, 1) equipped
with its Borel sigma-field and Lebesgue measure P̃, the function X̃ := qX (u) has
the same distribution as X . Similarly, if Y has distribution function FY and quantile
function qY , the random variable Ỹ := qY (u) has the same distribution as Y .

Notice that X̃ and Ỹ are both defined on the same (0, 1), even though the
original variables need not be defined on the same space. If X and Y do happen
to be defined on the same � their joint distribution need not be the same as the
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joint distribution for X̃ and Ỹ . In fact, the new variables are closer to each other,
in various senses. For example, several applications of Tonelli will show that
P|X − Y |p ≥ P̃|X̃ − Ỹ |p for each p ≥ 1.

As a first step, calculate an inequality for tail probabilities.

P{X > x, Y > y} ≤ min (P{X > x}, P{Y > y})
= min (1 − FX (x), 1 − FY (y))

= 1 − FX (x) ∨ FY (y)

=
∫ 1

0
{u > FX (x) ∨ FY (y)} du

=
∫ 1

0
{x < qX (u), y < qY (u)} du

= P̃{X̃ > x, Ỹ > y}<8>

We also have P{X > x} = P̃{X̃ > x} and P{Y > y} = P̃{Ỹ > y}, from equality of the
marginal distributions. By subtraction,

P
({X > x} + {Y > y} − 2{X > x, Y > y})

≥ P̃
({X̃ > x} + {Ỹ > y} − 2{X̃ > x, Ỹ > y}) for all x and y.<9>

The left-hand side can be rewritten as

P
ω

({X (ω) > x, y ≥ Y (ω)} + {X (ω) ≤ x, y < Y (ω)}) ,

a nonnegative function just begging for an application of Tonelli. For each real
constant s, put y = x + s then integrate over x with respect to Lebesgue measure m

on B(R). Tonelli lets us interchange the order of integration, leaving

P
ω

(
mx {X (ω) > x ≥ Y (ω) − s} + mx {X (ω) ≤ x < Y (ω) − s})
= P

ω
(
(X (ω) − Y (ω) + s)+ + (Y (ω) − s − X (ω))+

)
= P|X − Y + s|.

Argue similarly for the right-hand side of <9>, to deduce that

P|X − Y + s| ≥ P̃|X̃ − Ỹ + s| for all real s.

For each nonnegative t , invoke the inequality for s = t then s = −t , then add.

P (|X − Y + t | + |X − Y − t |) ≥ P̃
(|X̃ − Ỹ + t | + |X̃ − Ỹ − t |) for all t ≥ 0.

An appeal to the identity |z + t | + |z − t | = 2t + 2 (|z| − t)+, for z ∈ R and
t ≥ 0, followed by a cancellation of common terms, then leaves us with a useful
relationship, which neatly captures the idea that X̃ and Ỹ are more tightly coupled
than X and Y .

<10> P (|X − Y | − t)+ ≥ P̃
(|X̃ − Ỹ | − t

)+
for all t ≥ 0.

Various interesting inequalities follow from <10>. Putting t equal to zero we
get P|X − Y | ≥ P̃|X̃ − Ỹ |. For p > 1, note the identity

D p = p(p − 1)

∫ D

0
(D − t)t p−2 dt = p(p − 1)mt

0

(
t p−2 (D − t)+

)
for D ≥ 0,
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where m0 denotes Lebesgue measure on B
(
R

+)
. Temporarily write � for |X − Y |

and �̃ for |X̃ − Ỹ |. Two more appeals to Tonelli then give

P|X − Y |p = p(p − 1)mt
0

(
t p−2

P
ω (�(ω) − t)+

)
≥ p(p − 1)mt

0

(
t p−2

P̃
u(�̃(u) − t)+

)
= P̃|X̃ − Ỹ |p.

See Problem [quantile.orlicz] for the analogous inequality, P�(|X − Y |) ≥
P̃�(|X̃ − Ỹ |), for every convex, increasing function � on R

+.�


