Chapter 2

A modicum of measure theory
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2 February 2004: Modification of Section 2.11.

Generating classes of functions

Theorem <DYNKIN.THM> is often used as the starting point for proving facts about
measurable functions. One first invokes the Theorem to establish a property for
sets in a sigma-field, then one extends by taking limits of simple functions to M*
and beyond, using Monotone Convergence and linearity arguments. Sometimes it is
simpler to invoke an analog of the A-system property for classes of functions.

Definition. Let H be a set of bounded, real-valued functions on a set X. Call H
a \-space if:

(i) H is a vector space

(i) each constant function belongs to H;

(ii) if {h,} is an increasing sequence of functions in H whose pointwise limit h
is bounded then h € H.

The sigma-field properties of A-spaces are slightly harder to establish than their
A-system analogs, but the reward of more streamlined proofs will make the extra,
one-time effort worthwhile. First we need an analog of the fact that a A-system that
is stable under finite intersections is also a sigma-field.

Remember that o (H) is the smallest o-field on X for which each 4 in H is
o (FO\B(R)-measurable. It is the o-field generated by the collection of sets {4 € B}
with 2 € H and B € B(R). It is also generated by

Ex={{h<c}:heH, ceR}L
Lemma. If a A-space H is stable under the formation of pointwise products of
pairs of functions then it consists of all bounded, o (H)-measurable functions.

Proof. By definition, every function in H is o (){)-measurable. The proof that every
bounded, o (J{)-measurable function belongs to 3 will follow from the following
four facts:

(a) H is stable under uniform limits
(b) if h; and h, are in H then so are h; VvV hy and hy A hy
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(c) the collection of sets Ag :={A e A: A e H} is a o-field
(d) €4¢ € Ap and hence o (H) = o () C Ag

For suppose g is a bounded, o (H)-measurable function. With no loss of generality
(or by means of some linear rescaling) we may assume that 0 < g < 1. For each
real ¢, the (indicator function of the) o (3{)-measurable set {g > ¢} belongs to I,
by virtue of (d) and (c). The vector space property of J ensures that the simple
function g, :=27" 212:1 {g = i/2"} also belongs to . Stability of H under uniform
limits then implies that g € J.

Proof of (a). Suppose i, — h uniformly, with 4, € H. Write §, for 27". With no
loss of generality we may suppose h, + 8, > h > h, — 3, for all n. Notice that

hn + 35n = hn +8n + 6n—l > h + 8n—1 = hn—l-

the functions g, := h, +3(§; + ...+ §,) all belong to H, and g, 1 = + 3. It follows
that 27 + 3 € H, and hence, h € H.

Proof of (b). It is enough if we show that h™ € 3 for each & in H, because
hiNVhy =hy+ (hy —hy)" and — (h] A hz) = (—h1) V (=h3). Suppose ¢ < h <d, for
constants ¢ and d. First note that, for every polynomial p(y) =ap+a1y...+a,y",
we have

pth)y =ap+arth+...4+a,h™ € H,

because the constant function ap and each of the powers h* belong to the vector
space . By a minor extension of the Weierstrass approximation result from
Problem [WEIERSTRASS], the continuous function y + y* can be uniformly
approximated by a polynomial on the interval [c, d]. That is, there exists a sequence
of polynomials p, such that SUP,<y<y | Pn(y) — y*| — 0 as n — oco. In particular, h*
is a uniform limit of p,(h), so that it € H by virtue of (a).

Proof of (c). The fact that 1 € H and the stability of H under monotone limits,
differences, and finite products implies that Ap is a A-system of sets that is stable
under finite intersections, that is, A is a o-field.

Proof of (d). Suppose h € H and ¢ € R. By (b), the function
ho=(1+h—c)" Al

belongs to H. Notice that 0 < iy < 1 and {hp = 1} = {h > ¢}. As a monotone
increasing limit of functions 1 — kg from J, the (indicator function of the) set
{h < c} also belongs to K.

Theorem. Let§ be a set of functions from a A-space H. If G is stable under the
formation of pointwise products of pairs of functions then H contains all bounded,
o (9)-measurable functions.

Proof. Let Hy be the smallest A-space containing §. By Lemma <2>, it is enough
to show that Hy is stable under pairwise products.



More detail needed?
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Argue as in Theorem <DYNKIN.THM> for A-systems of sets. An almost
routine calculation shows that H; :={h € Hy : hg € Hy for all g in G } is a A-space
containing §. The only subtlety lies in showing that J; is stable under monotone
increasing limits. If h, € H; and h, t h and g > O, then gh, 1 gh. At points
where g is strictly negative, the sequence gh, would not be increasing. However,
we can find a constant C large enough that g + C > 0 everywhere, and hence gh
belongs to Hy as a monotone inceasing limit of Hy functions h,g + Ch, — Ch. It
follows that H; = Hy. That is, hog € Hy for all hy € Hp and g € §.

Similarly, H; := {h € Hp : hoh € Hy for all hy in Hy } is a A-space. By the
result for H; we have H, D G, and hence H, = Hy. That is, Hy is stable under
products.

Exercise. Let u be a finite measure on B(R¥). Write C for the vector space

of all continuous real functions on R* with compact support. Suppose f belongs
to L'(). Show that for each € > 0 there exists a g in Cp such that u|f — g| < e.
That is, show that Cy is dense in £!(x) under its L' norm.

SoLuTION: Define H as the collection of all bounded functions in £'(x) that can
be approximated arbitrarily closely (in £'(x) norm) by functions from Cy. Check
that HH is a A-space. Trivially it contains Cy. The sigma-field o (Cy) coincides with
the Borel sigma-field. Why? The class H consists of all bounded, nonnegative
Borel measurable functions.

See Problem [CO.DENSE2] for the extension of the approximation result to
infinite measures.



