
Chapter 2

A modicum of measure theory

SECTION 1 defines measures and sigma-fields.
SECTION 2 defines measurable functions.
SECTION 3 defines the integral with respect to a measure as a linear functional on a cone

of measurable functions. The definition sidesteps the details of the construction of
integrals from measures.

SECTION *4 constructs integrals of nonnegative measurable functions with respect to a
countably additive measure.

SECTION 5 establishes the Dominated Convergence theorem, the Swiss Army knife of
measure theoretic probability.

SECTION 6 collects together a number of simple facts related to sets of measure zero.
SECTION *7 presents a few facts about spaces of functions with integrable pth powers,

with emphasis on the case p=2, which defines a Hilbert space.
SECTION 8 defines uniform integrability, a condition slightly weaker than domination.

Convergence in L1 is characterized as convergence in probability plus uniform
integrability.

SECTION 9 defines the image measure, which includes the concept of the distribution of a
random variable as a special case.

SECTION 10 explains how generating class arguments, for classes of sets, make measure
theory easy.

SECTION *11 extends generating class arguments to classes of functions.

1. Measures and sigma-fields

As promised in Chapter 1, we begin with measures as set functions, then work
quickly towards the interpretation of integrals as linear functionals. Once we are
past the purely set-theoretic preliminaries, I will start using the de Finetti notation
(Section 1.4) in earnest, writing the same symbol for a set and its indicator function.

Our starting point is a measure space: a triple (X, A, µ), with X a set, A a class
of subsets of X, and µ a function that attaches a nonnegative number (possibly +∞)
to each set in A. The class A and the set function µ are required to have properties
that facilitate calculations involving limits along sequences.
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<1> Definition. Call a class A a sigma-field of subsets of X if:

(i) the empty set ∅ and the whole space X both belong to A;

(ii) if A belongs to A then so does its complement Ac;

(iii) if A1, A2, . . . is a countable collection of sets in A then both the union ∪i Ai

and the intersection ∩i Ai are also in A.

Some of the requirements are redundant as stated. For example, once we
have ∅ ∈ A then (ii) implies X ∈ A. When we come to establish properties about
sigma-fields it will be convenient to have the list of defining properties pared down
to a minimum, to reduce the amount of mechanical checking. The theorems will
be as sparing as possible in the amount the work they require for establishing the
sigma-field properties, but for now redundancy does not hurt.

The collection A need not contain every subset of X, a fact forced upon us in
general if we want µ to have the properties of a countably additive measure.

<2> Definition. A function µ defined on the sigma-field A is called a (countably
additive, nonnegative) measure if:

(i) 0 ≤ µA ≤ ∞ for each A in A;

(ii) µ∅ = 0;

(iii) if A1, A2, . . . is a countable collection of pairwise disjoint sets in A then
µ (∪i Ai ) = ∑

i µAi .

A measure µ for which µX = 1 is called a probability measure, and the
corresponding (X, A, µ) is called a probability space. For this special case it is
traditional to use a symbol like P for the measure, a symbol like 	 for the set,
and a symbol like F for the sigma-field. A triple (	, F, P) will always denote a
probability space.

Usually the qualifications “countably additive, nonnegative” are omitted, on the
grounds that these properties are the most commonly assumed—the most common
cases deserve the shortest names. Only when there is some doubt about whether
the measures are assumed to have all the properties of Definition <2> should the
qualifiers be attached. For example, one speaks of “finitely additive measures”
when an analog of property (iii) is assumed only for finite disjoint collections, or
“signed measures” when the value of µA is not necessarily nonnegative. When
finitely additive or signed measures are under discussion it makes sense to mention
explicitly when a particular measure is nonnegative or countably additive, but, in
general, you should go with the shorter name.

Where do measures come from? The most basic constructions start from set
functions µ defined on small collections of subsets E, such as the collection of all
subintervals of the real line. One checks that µ has properties consistent with the
requirements of Definition <2>. One seeks to extend the domain of definition while
preserving the countable additivity properties of the set function. As you saw in
Chapter 1, Theorems guaranteeing existence of such extensions were the culmination
of a long sequence of refinements in the concept of integration (Hawkins 1979).
They represent one of the great achievements of modern mathematics, even though
those theorems now occupy only a handful of pages in most measure theory texts.
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Finite additivity has several appealing interpretations (such as the fair-prices
of Section 1.5) that have given it ready acceptance as an axiom for a model of
real-world uncertainty. Countable additivity is sometimes regarded with suspicion,
or justified as a matter of mathematical convenience. (However, see Problem [6] for
an equivalent form of countable additivity, which has some claim to intuitive appeal.)
It is difficult to develop a simple probability theory without countable additivity,
which gives one the licence (for only a small fee) to integrate series term-by-term,
differentiate under integrals, and interchange other limiting operations.

The classical constructions are significant for my exposition mostly because they
ensure existence of the measures needed to express the basic results of probability
theory. I will relegate the details to the Problems and to Appendix A. If you crave
a more systematic treatment you might consult one of the many excellent texts on
measure theory, such as Royden (1968).

The constructions do not—indeed cannot, in general—lead to countably
additive measures on the class of all subsets of a given X. Typically, they extend
a set function defined on a class of sets E to a measure defined on the sigma-field
σ(E) generated by E, or to only slightly larger sigma-fields. By definition,

σ(E) := smallest sigma-field on X containing all sets from E

= {A ⊆ X : A ∈ F for every sigma-field F with E ⊆ F}.
The representation given by the second line ensures existence of a smallest sigma-
field containing E. The method of definition is analogous to many definitions of
“smallest . . . containing a fixed class” in mathematics—think of generated subgroups
or linear subspaces spanned by a collection of vectors, for example. For the
definition to work one needs to check that sigma-fields have two properties:

(i) If {Fi : i ∈ I} is a nonempty collection of sigma-fields on X then ∩i∈IFi , the
collection of all the subsets of X that belong to every Fi , is also a sigma-field.

(ii) For each E there exists at least one sigma-field F containing all the sets in E.

You should check property (i) as an exercise. Property (ii) is trivial, because the
collection of all subsets of X is a sigma-field.

Remark. Proofs of existence of nonmeasurable sets typically depend on
some deep set-theoretic principle, such as the Axiom of Choice. Mathematicians
who can live with different rules for set theory can have bigger sigma-fields. See
Dudley (1989, Section 3.4) or Oxtoby (1971, Section 5) for details.

<3> Exercise. Suppose X consists of five points a, b, c, d, and e. Suppose E consists
of two sets, E1 = {a, b, c} and E2 = {c, d, e}. Find the sigma-field generated by E.
Solution: For this simple example we can proceed by mechanical application of
the properties that a sigma-field σ(E) must possess. In addition to the obvious ∅
and X, it must contain each of the sets

F1 := {a, b} = E1 ∩ Ec
2 and F2 := {c} = E1 ∩ E2,

F3 := {d, e} = Ec
1 ∩ E2 and F4 := {a, b, d, e} = F1 ∪ F3.
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Further experimentation creates no new members of σ(E); the sigma-field consists
of the sets

∅, F1, F2, F3, F1 ∪ F3, F1 ∪ F2 = E1, F2 ∪ F3 = E2, X.

The sets F1, F2, F3 are the atoms of the sigma-field; every member of σ(E) is a
union of some collection (possibly empty) of Fi . The only measurable subsets of Fi

are the empty set and Fi itself. There are no measurable protons or neutrons hiding
inside these atoms.�

An unsystematic construction might work for finite sets, but it cannot generate
all members of a sigma-field in general. Indeed, we cannot even hope to list all
the members of an infinite sigma-field. Instead we must find a less explicit way to
characterize its sets.

<4> Example. By definition, the Borel sigma-field on the real line, denoted by B(R),
is the sigma-field generated by the open subsets. We could also denote it by σ(G)

where G stands for the class of all open subsets of R. There are several other
generating classes for B(R). For example, as you will soon see, the class E of all
intervals (−∞, t], with t ∈ R, is a generating class.

It might appear a hopeless task to prove that σ(E) = B(R) if we cannot
explicitly list the members of both sigma-fields, but actually the proof is quite
routine. You should try to understand the style of argument because it is often used
in probability theory.

The equality of sigma-fields is established by two inclusions, σ(E) ⊆ σ(G) and
σ(G) ⊆ σ(E), both of which follow from more easily established results. First we
must prove that E ⊆ σ(G), showing that σ(G) is one of the sigma-fields F that enter
into the intersection defining σ(E), and hence σ(E) ⊆ σ(G). The other inclusion
follows similarly if we show that G ⊆ σ(E).

Each interval (−∞, t] in E has a representation
⋂∞

n=1(−∞, t +n−1), a countable
intersection of open sets. The sigma-field σ(G) contains all open sets, and it is
stable under countable intersections. It therefore contains each (−∞, t]. That is,
E ⊆ σ(G).

The argument for G ⊆ σ(E) is only slightly harder. It depends on the fact
that an open subset of the real line can be written as a countable union of open
intervals. Such an interval has a representation (a, b) = (−∞, b) ∩ (−∞, a]c, and
(−∞, b) = ⋃∞

n=1(−∞, b − n−1]. That is, every open set can be built up from sets
in E using operations that are guaranteed not to take us outside the sigma-field σ(E).

My explanation has been moderately detailed. In a published paper the
reasoning would probably be abbreviated to something like “a generating class
argument shows that . . . ,” with the routine details left to the reader.�

Remark. The generating class argument often reduces to an assertion like: A
is a sigma-field and A ⊇ E, therefore A = σ(A) ⊇ σ(E).

<5> Example. A class E of subsets of a set X is called a field if it contains the empty
set and is stable under complements, finite unions, and finite intersections. For a
field E, write Eδ for the class of all possible intersections of countable subclasses
of E, and Eσ for the class of all possible unions of countable subclasses of E.
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Of course if E is a sigma-field then E = Eδ = Eσ , but, in general, the inclusions
σ(E) ⊇ Eδ ⊇ E and σ(E) ⊇ Eσ ⊇ E will be proper. For example, if X = R and E

consists of all finite unions of half open intervals (a, b], with possibly a = −∞ or
b = +∞, then the set of rationals does not belong to Eσ and the complement of the
same set does not belong to Eδ.

Let µ be a finite measure on σ(E). Even though σ(E) might be much larger
than either Eσ or Eδ, a generating class argument will show that all sets in σ(E) can
be inner approximated by Eδ, in the sense that,

µA = sup{µF : A ⊇ F ∈ Eδ} for each A in σ(E),

and outer approximated by Eσ , in the sense that,

µA = inf{µG : A ⊆ G ∈ Eσ } for each A in σ(E).

Remark. Incidentally, I chose the letters G and F to remind myself of open
and closed sets, which have similar approximation properties for Borel measures on
metric spaces—see Problem [12].

It helps to work on both approximation properties at the same time. Denote by
B0 the class of all sets in σ(E) that can be both innner and outer approximated. A
set B belongs to B0 if and only if, to each ε > 0 there exist F ∈ Eδ and G ∈ Eσ such
that F ⊆ B ⊆ G and µ(G\F) < ε. I’ll call the sets F and G an ε-sandwich for B.

Trivially B0 ⊇ E, because each member of E belongs to both Eσ and Eδ. The
approximation result will follow if we show that B0 is a sigma-field, for then we
will have B0 = σ(B0) ⊇ σ(E).

Symmetry of the definition ensures that B0 is stable under complements: if
F ⊆ B ⊆ G is an ε-sandwich for B, then Gc ⊆ Bc ⊆ Fc is an ε-sandwich for Bc.
To show that B0 is stable under countable unions, consider a countable collection
{Bn : n ∈ N} of sets from B0. We need to slice the bread thinner as n gets larger:
choose ε/2n-sandwiches Fn ⊆ Bn ⊆ Gn for each n. The union ∪n Bn is sandwiched
between the sets G := ∪nGn and H = ∪n Fn; and the sets are close in µ measure
because

µ
( ∪n Gn\ ∪n Fn

) ≤
∑

n

µ(Gn\Fn) <
∑

n

ε/2n = ε.

Remark. Can you prove this inequality? Do you see why ∪n Gn\ ∪n Fn ⊆
∪n (Gn\Fn) and why countable additivity implies that the measure of a countable union
of (not necessarily disjoint) sets is smaller than the sum of their measures? If not,
just wait until Section 3, after which you can argue that ∪n Gn\∪n Fn ≤ ∑

n(Gn\Fn),
as an inequality between indicator functions, and µ

(∑
n(Gn\Fn)

) = ∑
n µ(Gn\Fn)

by Monotone Convergence.

We have an ε-sandwich, but the bread might not be of the right type. It is
certainly true that G ∈ Eσ (a countable union of countable unions is a countable
union), but the set H need not belong to Eδ. However, the sets HN := ∪n≤N Fn do
belong to Eδ, and countable additivity implies that µHN ↑ µH .

Remark. Do you see why? If not, wait for Monotone Convergence again.

If we choose a large enough N we have a 2ε-sandwich HN ⊆ ∪n Bn ⊆ G.�
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The measure m on B(R) for which m(a, b] = b−a is called Lebesgue measure.
Another sort of generating class argument (see Section 10) can be used to show
that the values m(B) for B in B(R) are uniquely determined by the values given to
intervals; there can exist at most one measure on B(R) with the stated property. It
is harder to show that at least one such measure exists. Despite any intuitions you
might have about length, the construction of Lebesgue measure is not trivial—see
Appendix A. Indeed, Henri Lebesgue became famous for proving existence of the
measure and showing how much could be done with the new integration theory.

The name Lebesgue measure is also given to an extension of m to a measure
on a sigma-field, sometimes called the Lebesgue sigma-field, which is slightly larger
than B(R). I will have more to say about the extension in Section 6.

Borel sigma-fields are defined in similar fashion for any topological space X.
That is, B(X) denotes the sigma-field generated by the open subsets of X.

Sets in a sigma-field A are said to be measurable or A-measurable. In
probability theory they are also called events. Good functions will also be given the
title measurable. Try not to get confused when you really need to know whether an
object is a set or a function.

2. Measurable functions

Let X be a set equipped with a sigma-field A, and Y be a set equipped with a
sigma-field B, and T be a function (also called a map) from X to Y. We say that T
is A\B-measurable if the inverse image {x ∈ X : T x ∈ B} belongs to A for each
B in B. Sometimes the inverse image is denoted by {T ∈ B} or T −1 B. Don’t be
fooled by the T −1 notation into treating T −1 as a function from Y into X: it’s not,
unless T is one-to-one (and onto, if you want to have domain Y). Sometimes an
A\B-measurable map is referred to in abbreviated form as just A-measurable, or
just B-measurable, or just measurable, if there is no ambiguity about the unspecified
sigma-fields.

T-1B

T

B

(X,A)

(Y,B)

For example, if Y = R and B equals the Borel sigma-field B(R), it is common
to drop the B(R) specification and refer to the map as being A-measurable, or as
being Borel measurable if A is understood and there is any doubt about which
sigma-field to use for the real line. In this book, you may assume that any sigma-field
on R is its Borel sigma-field, unless explicitly specified otherwise. It can get confusing
if you misinterpret where the unspecified sigma-fields live. My advice would be
that you imagine a picture showing the two spaces involved, with any missing
sigma-field labels filled in.
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Sometimes the functions come first, and the sigma-fields are chosen specifically
to make those functions measurable.

<6> Definition. Let H be a class of functions on a set X. Suppose the typical h in H

maps X into a space Yh equipped with a sigma-field Bh . Then the sigma-field σ(H)

generated by H is defined as σ {h−1(B) : B ∈ Bh, h ∈ H}. It is the smallest
sigma-field A0 on X for which each h in H is A0\Bh-measurable.

<7> Example. If B = σ(E) for some class E of subsets of Y then a map T is
A\σ(E)-measurable if and only if T −1 E ∈ A for every E in E. You should prove
this assertion by checking that {B ∈ B : T −1 B ∈ A} is a sigma-field, and then
arguing from the definition of a generating class.

In particular, to establish A\B(R)-measurability of a map into the real line
it is enough to check the inverse images of intervals of the form (t, ∞), with t
ranging over R. (In fact, we could restrict t to a countable dense subset of R,
such as the set of rationals: How would you build an interval (t, ∞) from intervals
(ti , ∞) with rational ti ?) That is, a real-valued function f is Borel-measurable if
{x ∈ X : f (x) > t} ∈ A for each real t . There are many similar assertions obtained
by using other generating classes for B(R). Some authors use particular generating
classes for the definition of measurability, and then derive facts about inverse images
of Borel sets as theorems.�

It will be convenient to consider not just real-valued functions on a set X,
but also functions from X into the extended real line R := [−∞, ∞]. The Borel
sigma-field B(R) is generated by the class of open sets, or, more explicitly, by all
sets in B(R) together with the two singletons {−∞} and {∞}. It is an easy exercise
to show that B(R) is generated by the class of all sets of the form (t, ∞], for t in R,
and by the class of all sets of the form [−∞, t), for t in R. We could even restrict t
to any countable dense subset of R.

<8> Example. Let a set X be equipped with a sigma-field A. Let { fn : n ∈ N} be a
sequence of A\B(R)-measurable functions from X into R. Define functions f and g
by taking pointwise suprema and infima: f (x) := supn fn(x) and g(x) := infn fn(x).
Notice that f might take the value +∞, and g might take the value −∞, at some
points of X. We may consider both as maps from X into R. (In fact, the whole
argument is unchanged if the fn functions themselves are also allowed to take
infinite values.)

The function f is A\B(R)-measurable because

{x : f (x) > t} = ∪n{x : fn(x) > t} ∈ A for each real t :

for each fixed x , the supremum of the real numbers fn(x) is strictly greater than t
if and only if fn(x) > t for at least one n. Example <7> shows why we have only
to check inverse images for such intervals.

The same generating class is not as convenient for proving measurability of g.
It is not true that an infimum of a sequence of real numbers is strictly greater than t
if and only if all of the numbers are strictly greater than t : think of the sequence
{n−1 : n = 1, 2, 3, . . .}, whose infimum is zero. Instead you should argue via the
identity {x : g(x) < t} = ∪n{x : fn(x) < t} ∈ A for each real t .�
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From Example <8> and the representations lim sup fn(x) = infn∈N supm≥n fm(x)

and lim inf fn(x) = supn∈N infm≥n fm(x), it follows that the lim sup or lim inf of a
sequence of measurable (real- or extended real-valued) functions is also measurable.
In particular, if the limit exists it is measurable.

Measurability is also preserved by the usual algebraic operations—sums,
differences, products, and so on—provided we take care to avoid illegal pointwise
calculations such as ∞ − ∞ or 0/0. There are several ways to establish these
stability properties. One of the more direct methods depends on the fact that R has
a countable dense subset, as illustrated by the following argument for sums.

<9> Example. Let f and g be B(R)-measurable functions, with pointwise sum
h(x) = f (x) + g(x). (I exclude infinite values because I don’t want to get caught
up with inconclusive discussions of how we might proceed at points x where
f (x) = +∞ and g(x) = −∞, or f (x) = −∞ and g(x) = +∞.) How can we prove
that h is also a B(R)-measurable function?

It is true that

{x : h(x) > t} = ∪s∈R

({x : f (x) = s} ∩ {x : g(x) > t − s}) ,

and it is true that the set {x : f (x) = s} ∩ {x : g(x) > t − s} is measurable for each s
and t , but sigma-fields are not required to have any particular stability properties for
uncountable unions. Instead we should argue that at each x for which f (x)+g(x) > t
there exists a rational number r such that f (x) > r > t − g(x). Conversely if there
is an r lying strictly between f (x) and t − g(x) then f (x) + g(x) > t . Thus

{x : h(x) > t} = ∪r∈Q ({x : f (x) > r} ∩ {x : g(x) > t − r}) ,

where Q denotes the countable set of rational numbers. A countable union of
intersections of pairs of measurable sets is measurable. The sum is a measurable
function.�

As a little exercise you might try to extend the argument from the last Example
to the case where f and g are allowed to take the value +∞ (but not the value −∞).
If you want practice at playing with rationals, try to prove measurability of products
(be careful with inequalities if dividing by negative numbers) or try Problem [4],
which shows why a direct attack on the lim sup requires careful handling of
inequalities in the limit.

The real significance of measurability becomes apparent when one works
through the construction of integrals with respect to measures, as in Section 4. For
the moment it is important only that you understand that the family of all measurable
functions is stable under most of the familiar operations of analysis.

<10> Definition. The class M(X, A), or M(X) or just M for short, consists of all
A\B(R)-measurable functions from X into R. The class M+(X, A), or M+(X) or
just M+ for short, consists of the nonnegative functions in M(X, A).

If you desired exquisite precision you could write M(X, A, R, B(R)), to
eliminate all ambiguity about domain, range, and sigma-fields.

The collection M+ is a cone (stable under sums and multiplication of functions
by positive constants). It is also stable under products, pointwise limits of sequences,
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and suprema or infima of countable collections of functions. It is not a vector space,
because it is not stable under subtraction; but it does have the property that if f and
g belong to M+ and g takes only real values, then the positive part ( f − g)+, defined
by taking the pointwise maximum of f (x) − g(x) with 0, also belongs to M+. You
could adapt the argument from Example <9> to establish the last fact.

It proves convenient to work with M+ rather than with the whole of M, thereby
eliminating many problems with ∞ − ∞. As you will soon learn, integrals have
some convenient properties when restricted to nonnegative functions.

For our purposes, one of the most important facts about M+ will be the
possibility of approximation by simple functions that is by measurable functions
of the form s := ∑

i αi Ai , for finite collections of real numbers αi and events Ai

from A. If the Ai are disjoint, s(x) equals αi when x ∈ Ai , for some i , and is
zero otherwise. If the Ai are not disjoint, the nonzero values taken by s are sums
of various subsets of the {αi }. Don’t forget: the symbol Ai gets interpreted as an
indicator function when we start doing algebra. I will write M+

simple for the cone of
all simple functions in M+.

<11> Lemma. For each f in M+ the sequence { fn} ⊆ M+
simple, defined by

fn := 2−n
4n∑

i=1

{
f ≥ i/2n

}
,

has the property 0 ≤ f1(x) ≤ f2(x) ≤ . . . ≤ fn(x) ↑ f (x) at every x .

Remark. The definition of fn involves algebra, so you must interpret { f ≥ i/2n}
as the indicator function of the set of all points x for which f (x) ≥ i/2n .

Proof. At each x , count the number of nonzero indicator values. If f (x) ≥ 2n , all
4n summands contribute a 1, giving fn(x) = 2n . If k2−n ≤ f (x) < (k + 1)2−n , for
some integer k from {0, 1, 2, . . . , 4n − 1}, then exactly k of the summands contribute
a 1, giving fn(x) = k2−n . (Check that the last assertion makes sense when k
equals 0.) That is, for 0 ≤ f (x) < 2n , the function fn rounds down to an integer
multiple of 2−n , from which the convergence and monotone increasing properties
follow.

f

f1

f0

If you do not find the monotonicity assertion convincing, you could argue,
more formally, that

fn = 1
2n+1

4n∑
i=1

2
{

f ≥ 2i

2n+1

}
≤ 1

2n+1

4×4n∑
i=1

({
f ≥ 2i

2n+1

}
+

{
f ≥ 2i − 1

2n+1

})
= fn+1,

which reflects the effect of doubling the maximum value and halving the step size
when going from the nth to the (n+1)st approximation.�
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As an exercise you might prove that the product of functions in M+ also
belongs to M+, by expressing the product as a pointwise limit of products of simple
functions. Notice how the convention 0 × ∞ = 0 is needed to ensure the correct
limit behavior at points where one of the factors is zero.

3. Integrals

Just as
∫ b

a f (x) dx represents a sort of limiting sum of f (x) values weighted by
small lengths of intervals—the

∫
sign is a long “S”, for sum, and the dx is a sort

of limiting increment—so can the general integral
∫

f (x) µ(dx) be defined as a
limit of weighted sums but with weights provided by the measure µ. The formal
definition involves limiting operations that depend on the assumed measurability of
the function f . You can skip the details of the construction (Section 4) by taking
the following result as an axiomatic property of the integral.

<12> Theorem. For each measure µ on (X, A) there is a uniquely determined functional,
a map µ̃ from M+(X, A) into [0, ∞], having the following properties:

(i) µ̃(IA) = µA for each A in A;

(ii) µ̃(0) = 0, where the first zero stands for the zero function;

(iii) for nonnegative real numbers α, β and functions f , g in M+,

µ̃(α f + βg) = αµ̃( f ) + βµ̃(g);
(iv) if f , g are in M+ and f ≤ g everywhere then µ̃( f ) ≤ µ̃(g);

(v) if f1, f2, . . . is a sequence in M+ with 0 ≤ f1(x) ≤ f2(x) ≤ . . . ↑ f (x) for
each x in X then µ̃( fn) ↑ µ̃( f ).

I will refer to (iii) as linearity, even though M+ is not a vector space.
It will imply a linearity property when µ̃ is extended to a vector subspace of M.
Property (iv) is redundant because it follows from (ii) and nonnegativity. Property (ii)
is also redundant: put A = ∅ in (i); or, interpreting 0 × ∞ as 0, put α = β = 0 and
f = g = 0 in (iii). We need to make sure the bad case µ̃ f = ∞, for all f in M+,
does not slip through if we start stripping away redundant requirements.

Notice that the limit function f in (v) automatically belongs to M+. The
limit assertion itself is called the Monotone Convergence property. It corresponds
directly to countable additivity of the measure. Indeed, if {Ai : i ∈ N} is a countable
collection of disjoint sets from A then the functions fn := A1 + . . . + An increase
pointwise to the indicator function of A = ∪i∈N Ai , so that Monotone Convergence
and linearity imply µA = ∑

i µAi .

Remark. You should ponder the role played by +∞ in Theorem <12>. For
example, what does αµ̃( f ) mean if α = 0 and µ̃( f ) = ∞? The interpretation
depends on the convention that 0 × ∞ = 0.

In general you should be suspicious of any convention involving ±∞. Pay
careful attention to cases where it operates. For example, how would the five
assertions be affected if we adopted a new convention, whereby 0 × ∞ = 6? Would
the Theorem still hold? Where exactly would it fail? I feel uneasy if it is not
clear how a convention is disposing of awkward cases. My advice: be very, very
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careful with any calculations involving infinity. Subtle errors are easy to miss when
concealed within a convention.

There is a companion to Theorem <12> that shows why it is largely a matter
of taste whether one starts from measures or integrals as the more primitive measure
theoretic concept.

<13> Theorem. Let µ̃ be a map from M+ to [0, ∞] that satisfies properties (ii)
through (v) of Theorem <12>. Then the set function defined on the sigma-field A

by (i) is a (countably additive, nonnegative) measure, with µ̃ the functional that it
generates.

Lemma <11> provides the link between the measure µ and the functional µ̃.
For a given f in M+, let { fn} be the sequence defined by the Lemma. Then

µ̃ f = lim
n→∞ µ̃ fn = lim

n→∞ 2−n
4n∑

i=1

µ{ f ≥ i/2n},

the first equality by Monotone Convergence, the second by linearity. The value
of µ̃ f is uniquely determined by µ, as a set function on A. It is even possible to
use the equality, or something very similar, as the basis for a direct construction of
the integral, from which properties (i) through (v) are then derived, as you will see
from Section 4.

In summary: There is a one-to-one correspondence

A

IIAI

A

M
+

µ definedfinedf
    here

µ~ definedµ
    here

between measures on the sigma-field A and increasing linear
functionals on M+(A) with the Monotone Convergence
property. To each measure µ there is a uniquely determined
functional µ̃ for which µ̃(IA) = µ(A) for every A in A.
The functional µ̃ is usually called an integral with respect
to µ, and is variously denoted by

∫
f dµ or

∫
f (x) µ(dx)

or
∫
X

f dµ or
∫

f (x) dµ(x). With the de Finetti notation,
where we identify a set A with its indicator function, the
functional µ̃ is just an extension of µ from a smaller domain
(indicators of sets in A) to a larger domain (all of M+).

Accordingly, we should have no qualms about denoting it by the same symbol. I
will write µ f for the integral. With this notation, assertion (i) of Theorem <12>

becomes: µA = µA for all A in A. You probably can’t tell that the A on the
left-hand side is an indicator function and the µ is an integral, but you don’t need
to be able to tell—that is precisely what (i) asserts.

Remark. In elementary algebra we rely on parentheses, or precedence, to make
our meaning clear. For example, both (ax) + b and ax + b have the same meaning,
because multiplication has higher precedence than addition. With traditional notation,
the

∫
and the dµ act like parentheses, enclosing the integrand and separating it

from following terms. With linear functional notation, we sometimes need explicit
parentheses to make the meaning unambiguous. As a way of eliminating some
parentheses, I often work with the convention that integration has lower precedence
than exponentiation, multiplication, and division, but higher precedence than addition
or subtraction. Thus I intend you to read µ f g + 6 as (µ( f g)) + 6. I would write
µ( f g + 6) if the 6 were part of the integrand.
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Some of the traditional notations also remove ambiguity when functions of
several variables appear in the integrand. For example, in

∫
f (x, y) µ(dx) the y

variable is held fixed while the µ operates on the first argument of the function.
When a similar ambiguity might arise with linear functional notation, I will append
a superscript, as in µx f (x, y), to make clear which variable is involved in the
integration.

<14> Example. Suppose µ is a finite measure (that is, µX < ∞) and f is a function
in M+. Then µ f < ∞ if and only if

∑∞
n=1 µ{ f ≥ n} < ∞.

The assertion is just a pointwise inequality in disguise. By considering
separately values for which k ≤ f (x) < k + 1, for k = 0, 1, 2, . . ., you can verify the
pointwise inequality between functions,∑∞

n=1{ f ≥ n} ≤ f ≤ 1 + ∑∞
n=1{ f ≥ n}.

In fact, the sum on the left-hand side defines � f (x)�, the largest integer ≤ f (x),
and the right-hand side denotes the smallest integer > f (x). From the leftmost
inequality,

µ f ≥ µ
(∑∞

n=1{ f ≥ n}) increasing

= lim
N→∞

µ
(∑N

n=1{ f ≥ n}) Monotone Convergence

= lim
N→∞

∑N
n=1 µ{ f ≥ n} linearity

= ∑∞
n=1 µ{ f ≥ n}.

A similar argument gives a companion upper bound. Thus the pointwise inequality
integrates out to

∑∞
n=1 µ{ f ≥ n} ≤ µ f ≤ µX + ∑∞

n=1 µ{ f ≥ n}, from which the
asserted equivalence follows.�

Extension of the integral to a larger class of functions

Every function f in M can be decomposed into a difference f = f + − f − of two
functions in M+, where f +(x) := max

(
f (x), 0

)
and f −(x) := max

(− f (x), 0
)
. To

extend µ from M+ to a linear functional on M we should define µ f := µ f + − µ f −.
This definition works if at least one of µ f + and µ f − is finite; otherwise we get
the dreaded ∞ − ∞. If both µ f + < ∞ and µ f − < ∞ (or equivalently, f is
measurable and µ| f | < ∞) the function f is said to be integrable or µ-integrable.
The linearity property (iii) of Theorem <12> carries over partially to M if ∞ − ∞
problems are excluded, although it becomes tedious to handle all the awkward cases
involving ±∞. The constants α and β need no longer be nonnegative. Also if both
f and g are integrable and if f ≤ g then µ f ≤ µg, with obvious extensions to
certain cases involving ∞.

<15> Definition. The set of all real-valued, µ-integrable functions in M is denoted by
L1(µ), or L1(X, A, µ).

The set L1(µ) is a vector space (stable under pointwise addition and multipli-
cation by real numbers). The integral µ defines an increasing linear functional on
L1(µ), in the sense that µ f ≥ µg if f ≥ g pointwise. The Monotone Convergence
property implies other powerful limit results for functions in L1(µ), as described in
Section 5. By restricting µ to L1(µ), we eliminate problems with ∞ − ∞.
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For each f in L1(µ), its L1 norm is defined as ‖ f ‖1 := µ| f |. Strictly speaking,
‖ · ‖1 is only a seminorm, because ‖ f ‖1 = 0 need not imply that f is the zero
function—as you will see in Section 6, it implies only that µ{ f �= 0} = 0. It
is common practice to ignore the small distinction and refer to ‖ · ‖1 as a norm
on L1(µ).

<16> Example. Let � be a convex, real-valued function on R. The function � is
measurable (because {� ≤ t} is an interval for each real t), and for each x0 in R

there is a constant α such that �(x) ≥ �(x0) + α(x − x0) for all x (Appendix C).
Let P be a probability measure, and X be an integrable random variable.

Choose x0 := PX . From the inequality �(x) ≥ −|�(x0)| − |α|(|x | + |x0|) we
deduce that P�(X)− ≤ |�(x0)| + |α|(P|X | + |x0|) < ∞. Thus we should have no
∞ − ∞ worries in taking expectations (that is, integrating with respect to P) to
deduce that P�(X) ≥ �(PX) + α(PX − x0) = �(PX), a result known as Jensen’s
inequality. One way to remember the direction of the inequality is to note that
0 ≤ var(X) = PX2 − (PX)2, which corresponds to the case �(x) = x2.�

Integrals with respect to Lebesgue measure

Lebesgue measure m on B(R) corresponds to length: m[a, b] = b − a for each
interval. I will occasionally revert to the traditional ways of writing such integrals,

m f =
∫

f (x) dx =
∫ ∞

−∞
f (x) dx and mx

(
f (x){a ≤ x ≤ b}) =

∫ b

a
f (x)dx .

Don’t worry about confusing the Lebesgue integral with the Riemann integral over
finite intervals. Whenever the Riemann is well defined, so is the Lebesgue, and the
two sorts of integral have the same value. The Lebesgue is a more general concept.
Indeed, facts about the Riemann are often established by an appeal to theorems
about the Lebesgue. You do not have to abandon what you already know about
integration over finite intervals.

The improper Riemann integral,
∫ ∞
−∞ f (x) dx = limn→∞

∫ n
−n f (x) dx , also agrees

with the Lebesgue integral provided m| f | < ∞. If m| f | = ∞, as in the case of
the function f (x) := ∑∞

n=1{n ≤ x < n + 1}(−1)n/n, the improper Riemann integral
might exist as a finite limit, while the Lebesgue integral m f does not exist.

*4. Construction of integrals from measures

To construct the integral µ̃ as a functional on M+(X, A), starting from a measure
µ on the sigma-field A, we use approximation from below by means of simple
functions.

First we must define µ̃ on M+
simple. The representation of a simple function as a

linear combination of indicator functions is not unique, but the additivity properties
of the measure µ will let us use any representation to define the integral. For
example, if s := 3A1 + 7A2 = 3A1 Ac

2 + 10A1 A2 + 7Ac
1 A2, then

3µ(A1) + 7µ(A2) = 3µ(A1 Ac
2) + 10µ(A1 A2) + 7µ(Ac

1 A2).
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More generally, if s := ∑
i αi Ai has another representation s = ∑

j βj Bj , then∑
i αiµAi = ∑

j βjµBj . Proof? Thus we can uniquely define µ̃(s) for a simple
function s := ∑

i αi Ai by µ̃ (s) := ∑
i αiµAi .

Define the increasing functional µ̃ on M+ by

µ̃ ( f ) := sup{µ̃ (s) : f ≥ s ∈ M+
simple}.

That is, the integral of f is a supremum of integrals of nonnegative simple functions
less than f .

From the representation of simple functions as linear combinations of disjoint
sets in A, it is easy to show that µ̃(IA) = µA for every A in A. It is also easy to
show that µ̃(0) = 0, and µ̃(α f ) = αµ̃( f ) for nonnegative real α, and

<17> µ̃( f + g) ≥ µ̃( f ) + µ̃(g).

The last inequality, which is usually referred to as the superadditivity property,
follows from the fact that if f ≥ u and g ≥ v, and both u and v are simple, then
f + g ≥ u + v with u + v simple.

Only the Monotone Convergence property and the companion to <17>,

<18> µ̃( f + g) ≤ µ̃( f ) + µ̃(g),

require real work. Here you will see why measurability is needed.

Proof of inequality <18>. Let s be a simple function ≤ f + g, and let ε be a small
positive number. It is enough to construct simple functions u, v with u ≤ f and
v ≤ g such that u + v ≥ (1 − ε)s. For then µ̃ f + µ̃g ≥ µ̃u + µ̃v ≥ (1 − ε)µ̃s, from
which the subadditivity inequality <18> follows by taking a supremum over simple
functions then letting ε tend to zero.

For simplicity of notation I will assume s to be very simple: s := A. You can

f

A

u

repeat the argument for each Ai in a representation
∑

i αi Ai with disjoint Ai to get
the general result. Suppose ε = 1/m for some positive
integer m. Write �j for j/m. Define simple functions

u := A{ f ≥ 1} + ∑m
j=1 A

{
�j−1 ≤ f < �j

}
�j−1,

v := ∑m
j=1 A

{
�j−1 ≤ f < �j

} (
1 − �j

)
.

The measurability of f ensures A-measurability of all
the sets entering into the definitions of u and v. For the

inequality v ≤ g, notice that f + g ≥ 1 on A, so g > 1 − �j = v when �j−1 ≤ f < �j

on A. Finally, note that the simple functions were chosen so that

u + v = A{ f ≥ 1} + ∑m
j=1 A

{
�j−1 ≤ f < �j

}
(1 − ε) ≥ (1 − ε) A,

as desired.�
Proof of the Monotone Convergence property. Suppose fn ∈ M+f

fnfnf and fn ↑ f . Suppose f ≥ s := ∑
αi Ai , with the Ai disjoint

sets in A and αi > 0. Define approximating simple functions
sn := ∑

i (1 − ε)αi Ai { fn ≥ (1 − ε)αi }. Clearly sn ≤ fn . The
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simple function sn is one of those that enters into the supremum defining µ̃ fn . It
follows that

µ̃ fn ≥ µ̃(sn) = (1 − ε)
∑

i αiµ
(

Ai { fn ≥ (1 − ε)αi }
)
.

On the set Ai the functions fn increase monotonely to f , which is ≥ αi . The sets
Ai { fn ≥ (1 − ε)αi } expand up to the whole of Ai . Countable additivity implies that
the µ measures of those sets increase to µAi . It follows that

lim µ̃ fn ≥ lim sup µ̃sn ≥ (1 − ε)µ̃s.

Take a supremum over simple s ≤ f then let ε tend to zero to complete the proof.�

5. Limit theorems

Theorem <13> identified an integral on M+ as an increasing linear functional with
the Monotone Convergence property :

<19> if 0 ≤ fn ↑ then µ
(

lim
n→∞ fn

)
= lim

n→∞ µ fn.

Two direct consequences of this limit property have important applications through-
out probability theory. The first, Fatou’s Lemma, asserts a weaker limit property
for nonnegative functions when the convergence and monotonicity assumptions are
dropped. The second, Dominated Convergence, drops the monotonicity and nonneg-
ativity but imposes an extra domination condition on the convergent sequence { fn}.
I have slowly realized over the years that many simple probabilistic results can be
established by Dominated Convergence arguments. The Dominated Convergence
Theorem is the Swiss Army Knife of probability theory.

It is important that you understand why some conditions are needed before
we can interchange integration (which is a limiting operation) with an explicit
limit, as in <19>. Variations on the following example form the basis for many
counterexamples.

<20> Example. Let µ be Lebesgue measure on B[0, 1] and let {αn} be a sequence
of positive numbers. The function fn(x) := αn{0 < x < 1/n} converges to zero,
pointwise, but its integral µ( fn) = αn/n need not converge to zero. For example,
αn = n2 gives µ fn → ∞; the integrals diverge. And

αn =
{

6n for n even
3n for n odd

gives µ fn =
{

6 for n even
3 for n odd.

The integrals oscillate.�
<21> Fatou’s Lemma. For every sequence { fn} in M+ (not necessarily convergent),

µ(lim infn→∞ fn) ≤ lim infn→∞ µ( fn).

Proof. Write f for lim inf fn . Remember what a lim inf means. Define gn :=
infm≥n fm . Then gn ≤ fn for every n and the {gn} sequence increases monotonely to
the function f . By Monotone Convergence, µ f = limn→∞ µgn . By the increasing
property, µgn ≤ µ fn for each n, and hence limn→∞ µgn ≤ lim infn→∞ µ fn .�


