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hence σ(E) = σ(H+). For a fixed h and C , the continuous function (1 − (h/C)n)+

of h belongs to H+, and it increases monotonely to the indicator of {h < C}.
Thus the indicators of all sets in E belong to H+. The assumptions about H+

ensure that the class B of all sets whose indicator functions belong to H+ is stable
under finite intersections (products), complements (subtract from 1), and increasing
countable unions (montone increasing limits). That is, B is a λ-system, stable
under finite intersections, and containing E. It is a sigma-field containing E. Thus
B ⊇ σ(E) = σ(H+). That is, H+ contains all indicators of sets in σ(H+).

Finally, let k be a bounded, nonnegative, σ(H+)-measurable function. From
the fact that each of the sets {k ≥ i/2n}, for i = 1, . . . , 4n , belongs to the cone H+,
we have kn := 2−n

∑4n

i=1{k ≥ i/2n} ∈ H+. The functions kn increase monotonely
to k, which consequently also belongs to H+.�

<45> Theorem. Let H+ be a λ-cone of bounded, nonnegative functions, and G be a
subclass of H+ that is stable under the formation of pointwise products of pairs of
functions. Then H+ contains all bounded, nonnegative, σ(G)-measurable functions.

Proof. Let H+
0 be the smallest λ-cone containing G. From the previous Lemma, it

is enough to show that H+
0 is stable under pairwise products.

Argue as in Theorem <38> for λ-systems of sets. A routine calculation shows
that H+

1 := {h ∈ H+
0 : hg ∈ H+

0 for all g in G } is a λ-cone containing G, and
hence H+

1 = H+
0 . That is, h0g ∈ H+

0 for all h0 ∈ H+
0 and g ∈ G. Similarly, the class

H+
2 := {h ∈ H+

0 : h0h ∈ H+
0 for all h0 in H+

0 } is a λ-cone. By the result for H+
1 we

have H+
2 ⊇ G, and hence H+

2 = H+
0 . That is, H+

0 is stable under products.�
<46> Exercise. Let µ be a finite measure on B(Rk). Write C0 for the vector space

of all continuous real functions on Rk with compact support. Suppose f belongs
to L1(µ). Show that for each ε > 0 there exists a g in C0 such that µ| f − g| < ε.
That is, show that C0 is dense in L1(µ) under its L1 norm.�
Solution: Define H as the collection of all bounded functions in L1(µ) that
can be approximated arbitrarily closely by functions from C0. Check that the
class H+ of nonnegative functions in H is a λ-cone. Trivially it contains C+

0 , the
class of nonnegative members of C0. The sigma-field σ(C+

0 ) coincides with the
Borel sigma-field. Why? The class H+ consists of all bounded, nonnegative Borel
measurable functions.

To approximate a general f in L1(µ), first reduce to the case of nonnegative
functions by splitting into positive and negative parts. Then invoke Dominated
Convergence to find a finite n for which µ| f +− f +∧n| < ε, then approximate f +∧n
by a member of C+

0 . See Problem [26] for the extension of the approximation result
to infinite measures.�

12. Problems

[1] Suppose events A1, A2, . . ., in a probability space (	, F, P), are independent:
meaning that P(Ai1 Ai2 . . . Aik ) = PAi1PAi2 . . . PAik for all choices of distinct
subscripts i1, i2, . . . , ik , all k. Suppose

∑∞
i=1 PAi = ∞.
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(i) Using the inequality e−x ≥ 1 − x , show that

P max
n≤i≤m

Ai = 1 −
∏

n≤i≤m

(1 − PAi ) ≥ 1 − exp

(
−

∑
n≤i≤m

PAi

)
(ii) Let m then n tend to infinity, to deduce (via Dominated Convergence) that

P lim supi Ai = 1. That is, P{Ai i. o.} = 1.

Remark. The result gives a converse for the Borel-Cantelli lemma from
Example <29>. The next Problem establishes a similar result under weaker
assumptions.

[2] Let A1, A2, . . . be events in a probability space (	, F, P). Define Xn = A1 + . . .+ An

and σn = PXn . Suppose σn → ∞ and ‖Xn/σn‖2 → 1. (Compare with the inequality
‖Xn/σn‖2 ≥ 1, which follows from Jensen’s inequality.)

(i) Show that

{Xn = 0} ≤ (k − Xn)(k + 1 − Xn)

k(k + 1)

for each positive integer k.

(ii) By an appropriate choice of k (depending on n) in (i), deduce that
∑∞

1 Ai ≥ 1
almost surely.

(iii) Prove that
∑∞

m Ai ≥ 1 almost surely, for each fixed m. Hint: Show that the
two convergence assumptions also hold for the sequence Am, Am+1, . . . .

(iv) Deduce that P{ω ∈ Ai i. o. } = 1.

(v) If {Bi } is a sequence of events for which
∑

i PBi = ∞ and PBi Bj = PBiPBj

for i �= j , show that P{ω ∈ Bi i. o. } = 1.

[3] Suppose T is a function from a set X into a set Y, and suppose that Y is equipped
with a σ -field B. Define A as the sigma-field of sets of the form T −1 B, with B in B.
Suppose f ∈ M+(X, A). Show that there exists a B\B[0, ∞]-measurable function
g from Y into [0, ∞] such that f (x) = g(T (x)), for all x in X, by following these
steps.

(i) Show that A is a σ -field on X. (It is called the σ -field generated by the map T .
It is often denoted by σ(T ).)

(ii) Show that { f ≥ i/2n} = T −1 Bi,n for some Bi,n in B. Define

fn = 2−n
4n∑

i=1

{ f ≥ i/2n} and gn = 2−n
4n∑

i=1

Bi,n.

Show that fn(x) = gn(T (x)) for all x .

(iii) Define g(y) = lim sup gn(y) for each y in Y. Show that g has the desired
property. (Question: Why can’t we define g(y) = lim gn(y)?)

[4] Let g1, g2, . . . be A\B(R)-measurable functions from X into R. Show that
{lim supn gn > t} = ⋃

r∈Q
r>t

⋂∞
m=1

⋃
i≥m{gi > r}. Deduce, without any appeal to

Example <8>, that lim sup gn is A\B(R)-measurable. Warning: Be careful about
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strict inequalities that turn into nonstrict inequalities in the limit—it is possible to
have xn > x for all n and still have lim supn xn = x .

[5] Suppose a class of sets E cannot separate a particular pair of points x , y: for every E
in E, either {x, y} ⊆ E or {x, y} ⊆ Ec. Show that σ(E) also cannot separate the pair.

[6] A collection of sets F0 that is stable under finite unions, finite intersections, and
complements is called a field. A nonnegative set function µ defined on F0 is called
a finitely additive measure if µ

(∪i≤n Fi
) = ∑

i≤n µFi for every finite collection
of disjoint sets in F0. The set function is said to be countably additive on F0 if
µ (∪i∈N Fi ) = ∑

i∈N µFi for every countable collection of disjoint sets in F0 whose
union belongs to F. Suppose µX < ∞. Show that µ is countably additive on F0 if
and only if µAn ↓ 0 for every decreasing sequence in F0 with empty intersection.
Hint: For the argument in one direction, consider the union of differences Ai\Ai+1.

[7] Let f1, . . . , fn be functions in M+(X, A), and let µ be a measure on A. Show that
µ (∨i fi ) ≤ ∑

i µ fi ≤ µ (∨i fi )+∑
i< j µ

(
fi ∧ f j

)
where ∨ denotes pointwise maxima

of functions and ∧ denotes pointwise minima.

[8] Let µ be a finite measure and f be a measurable function. For each positive
integer k, show that µ| f |k < ∞ if and only if

∑∞
n=1 nk−1µ{| f | ≥ n} < ∞.

[9] Suppose ν := T µ, the image of the measure µ under the measurable map T . Show
that f ∈ L1(ν) if and only if f ◦ T ∈ L1(µ), in which case ν f = µ ( f ◦ T ).

[10] Let {hn}, { fn}, and {gn} be sequences of µ-integrable functions that converge µ

almost everywhere to limits h, f and g. Suppose hn(x) ≤ fn(x) ≤ gn(x) for all x .
Suppose also that µhn → µh and µgn → µg. Adapt the proof of Dominated
Convergence to prove that µ fn → µ f .

[11] A collection of sets is called a monotone class if it is stable under unions of
increasing sequences and intersections of decreasing sequences. Adapt the argument
from Theorem <38> to prove: if a class E is stable under finite unions and
complements then σ(E) equals the smallest monotone class containing E.

[12] Let µ be a finite measure on the Borel sigma-field B(X) of a metric space X. Call
a set B inner regular if µB = sup{µF : B ⊇ F closed } and outer regular if
µB = inf{µF : B ⊆ G open }

(i) Prove that the class B0 of all Borel sets that are both inner and outer regular is
a sigma-field. Deduce that every Borel set is inner regular.

(ii) Suppose µ is tight: for each ε > 0 there exists a compact Kε such that
µK c

ε < ε. Show that the F in the definition of inner regularity can then be
assumed compact.

(iii) When µ is tight, show that there exists a sequence of disjoint compacts subsets
{Ki : i ∈ N} of X such that µ (∪i Ki )

c = 0.

[13] Let µ be a finite measure on the Borel sigma-field of a complete, separable metric
space X. Show that µ is tight: for each ε > 0 there exists a compact Kε such that
µK c

ε < ε. Hint: For each positive integer n, show that the space X is a countable
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union of closed balls with radius 1/n. Find a finite family of such balls whose
union Bn has µ measure greater than µX − ε/2n . Show that ∩n Bn is compact, using
the total-boundedness characterization of compact subsets of complete metric spaces.

[14] A sequence of random variables {Xn} is said to converge in probability to a random

variable X , written Xn
P−→ X , if P{|Xn − X | > ε} → 0 for each ε > 0.

(i) If Xn → X almost surely, show that 1 ≥ {|Xn − X | > ε} → 0 almost surely.
Deduce via Dominated Convergence that Xn converges in probability to X .

(ii) Give an example of a sequence {Xn} that converges to X in probability but not
almost surely.

(iii) Suppose Xn → X in probability. Show that there is an increasing sequence of
positive integers {n(k)} for which

∑
k P{|Xn(k) − X | > 1/k} < ∞. Deduce that

Xn(k) → X almost surely.

[15] Let f and g be measurable functions on (X, A, µ), and r and s be positive real
numbers for which r−1 + s−1 = 1. Show that µ| f g| ≤ (µ| f |r )1/r (µ|g|s)1/s by
arguing as follows. First dispose of the trivial case where one of the factors on
the righthand side is 0 or ∞. Then, without loss of generality (why?), assume
that µ| f |r = 1 = µ|g|s . Use concavity of the logarithm function to show that
| f g| ≤ | f |r/r + |g|s/s, and then integrate with respect to µ. This result is called the
Hölder inequality.

[16] Generalize the Hölder inequality (Problem [15]) to more than two measurable
functions f1, . . . , fk , and positive real numbers r1, . . . , rk for which

∑
i r−1

i = 1.
Show that µ| f1 . . . fk | ≤ ∏

i (µ| fi |ri )1/ri .

[17] Let (X, A, µ) be a measure space, f and g be measurable functions, and r be a
real number with r ≥ 1. Define ‖ f ‖r = (µ| f |r )1/r . Follow these steps to prove
Minkowski’s inequality: ‖ f + g‖r ≤ ‖ f ‖r + ‖g‖r .

(i) From the inequality |x + y|r ≤ |2x |r + |2y|r deduce that ‖ f + g‖r < ∞ if
‖ f ‖r < ∞ and ‖g‖r < ∞.

(ii) Dispose of trivial cases, such as ‖ f ‖r = 0 or ‖ f ‖r = ∞.

(iii) For arbitrary positive constants c and d argue by convexity that( | f | + |g|
c + d

)r

≤ c

c + d

( | f |
c

)r

+ d

c + d

( |g|
d

)r

(iv) Integrate, then choose c = ‖ f ‖r and d = ‖g‖r to complete the proof.

[18] For f in L1(µ) define ‖ f ‖1 = µ| f |. Let { fn} be a Cauchy sequence in L1(µ), that
is, ‖ fn − fm‖1 → 0 as min(m, n) → ∞. Show that there exists an f in L1(µ) for
which ‖ fn − f ‖1 → 0, by following these steps.

(i) Find an increasing sequence {n(k)} such that
∑∞

k=1 ‖ fn(k) − fn(k+1)‖1 < ∞.
Deduce that the function H := ∑∞

k=1 | fn(k) − fn(k+1)| is integrable.

(ii) Show that there exists a real-valued, measurable function f for which

H ≥ | fn(k)(x) − f (x)| → 0 as k → ∞, for µ almost all x .
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Deduce that ‖ fn(k) − f ‖1 → 0 as k → ∞.

(iii) Show that f belongs to L1(µ) and ‖ fn − f ‖1 → 0 as n → ∞.

[19] Let { fn} be a Cauchy sequence in Lp(X, A, µ), that is, ‖ fn − fm‖p → 0 as
min(m, n) → ∞. Show that there exists a function f in Lp(X, A, µ) for which
‖ fn − f ‖p → 0, by following these steps.

(i) Find an increasing sequence {n(k)} such that C := ∑∞
k=1 ‖ fn(k) − fn(k+1)‖p < ∞.

Define H∞ = limN→∞ HN , where HN = ∑N
k=1 | fn(k) − fn(k+1)| for 1 ≤ N < ∞.

Use the triangle inequality to show that µH p
N ≤ C p for all finite N . Then use

Monotone Convergence to deduce that µH p
∞ ≤ C p.

(ii) Show that there exists a real-valued, measurable function f for which fn(k)(x) →
f (x) as k → ∞, a.e. [µ].

(iii) Show that | fn(k) − f | ≤ ∑∞
i=k | fn(i) − fn(i+1)| ≤ H∞ a.e. [µ]. Use Dominated

Convergence to deduce that ‖ fn(k) − f ‖p → 0 as k → ∞.

(iv) Deduce from (iii) that f belongs to Lp(X, A, µ) and ‖ fn − f ‖p → 0 as n → ∞.

[20] For each random variable on a probability space (	, F, P) define

‖X‖∞ := inf{c ∈ [0, ∞] : |X | ≤ c almost surely}.
Let L∞ := L∞ (	, F, P) denote the set of equivalence classes of real-valued random
variables with ‖X‖∞ < ∞. Show that ‖ · ‖∞ is a norm on L∞, which is a vector
space, complete under the metric defined by ‖X‖∞.

[21] Let {Xt : t ∈ T } be a collection of R-valued random variables with possibly
uncountable index set T . Complete the following argument to show that there exists
a countable subset T0 of T such that the random variable X = supt∈T0

Xt has the
properties

(a) X ≥ Xt almost surely, for each t ∈ T

(b) if Y ≥ Xt almost surely, for each t ∈ T , then Y ≥ X almost surely

(The random variable X is called the essential supremum of the family. It is denoted
by ess supt∈T Xt . Part (b) shows that it is, unique up to an almost sure equivalence.)

(i) Show that properties (a) and (b) are unaffected by a monotone, one-to-one
transformation such as x �→ x/(1 + |x |). Deduce that there is no loss of
generality in assuming |Xt | ≤ 1 for all t .

(ii) Let δ = sup{P supt∈S Xt : countable S ⊆ T }. Choose countable Tn such that
P supt∈Tn

Xt ≥ δ − 1/n. Let T0 = ∪nTn . Show that P supt∈T0
Xt = δ.

(iii) Suppose t /∈ T0. From the inequality δ ≥ P (Xt ∨ X) ≥ PX = δ deduce that
X ≥ Xt almost surely.

(iv) For a Y as in assertion (b), show that Y ≥ supt∈T0
Xt = X almost surely.

[22] Let � be a convex, increasing function for which �(0) = 0 and �(x) → ∞ as
x → ∞. (For example, �(x) could equal x p for some fixed p ≥ 1, or exp(x) − 1
or exp(x2) − 1.) Define L�(X, A, µ) to be the set of all real-valued measurable
functions on X for which µ�(| f |/c0) < ∞ for some positive real c0. Define
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‖ f ‖� := inf{c > 0 : µ�(| f |/c) ≤ 1}, with the convention that the infimum of an
empty set equals +∞. For each f , g in L�(X, A, µ) and each real t prove the
following assertions.

(i) ‖ f ‖� < ∞. Hint: Apply Dominated Convergence to µ�(| f |/c).

(ii) f +g ∈ L�(X, A, µ) and the triangle inequality holds: ‖ f +g‖� ≤ ‖ f ‖� +‖g‖� .
Hint: If c > ‖ f ‖� and d > ‖g‖� , deduce that

�

( | f + g|
c + d

)
≤ c

c + d
�

( | f |
c

)
+ d

c + d
�

( |g|
d

)
,

by convexity of �.

(iii) t f ∈ L�(X, A, µ) and ‖t f ‖� = |t | ‖ f ‖� .

Remark. ‖ · ‖� is called an Orlicz “norm”—to make it a true norm one should
work with equivalence classes of functions equal µ almost everywhere. The L p

norms correspond to the special case �(x) = x p , for some p ≥ 1.

[23] Define ‖ f ‖� and L� as in Problem [22]. Let { fn} be a Cauchy sequence in L�(µ),
that is, ‖ fn − fm‖� → 0 as min(m, n) → ∞. Show that there exists an f in L�(µ)

for which ‖ fn − f ‖� → 0, by following these steps.

(i) Let {gi } be a nonnegative sequence in L�(µ) for which C := ∑
i ‖gi‖� < ∞.

Show that the function G := ∑
i gi is finite almost everywhere and ‖G‖� ≤∑

i ‖gi‖� < ∞. Hint: Use Problem [22] to show that P�
(∑

i≤n gi/C
) ≤ 1 for

each n, then justify a passage to the limit.

(ii) Find an increasing sequence {n(k)} such that
∑∞

k=1 ‖ fn(k) − fn(k+1)‖� < ∞.
Deduce that the functions HL := ∑∞

k=L | fn(k) − fn(k+1)| satisfy

∞ > ‖H1‖� ≥ ‖H2‖� ≥ . . . → 0.

(iii) Show that there exists a real-valued, measurable function f for which

| fn(k)(x) − f (x)| → 0 as k → ∞, for µ almost all x .

(iv) Given ε > 0, choose L so that ‖HL‖� < ε. For i > L, show that

� (HL/ε) ≥ �
(| fn(L) − fn(i)|/ε

) → �
(| fn(L) − f |/ε) .

Deduce that ‖ fn(L) − f ‖� ≤ ε.

(v) Show that f belongs to L�(µ) and ‖ fn − f ‖� → 0 as n → ∞.

[24] Let � be a convex increasing function with �(0) = 0, as in Problem [22]. Let �−1

denote its inverse function. If X1, . . . , X N ∈ L�(X, A, µ), show that

P max
i≤N

|Xi | ≤ �−1(N ) max
i≤N

‖Xi‖�.

Hint: Consider �(P max |X I |/C) with C > maxi≤N ‖Xi‖� .

Remark. Compare with van der Vaart & Wellner (1996, page 96): if
also lim supx,y→∞ �(x)�(y)/�(cxy) < ∞ for some constant c > 0 then
‖ maxi≤N |Xi |‖� ≤ K�−1(N ) maxi≤N ‖Xi‖� for a constant K depending only on �.
See page 105 of their Problems and Complements for related counterexamples.
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[25] For each θ in [0, 1] let Xn,θ be a random variable with a Binomial(n, θ) distribution.
That is, P{Xn,θ = k} = (n

k

)
θ k(1 − θ)n−k for k = 0, 1, . . . , n. You may assume these

elementary facts: PXn,θ = nθ and P(Xn,θ − nθ)2 = nθ(1 − θ). Let f be a continuous
function defined on [0, 1].

(i) Show that pn(θ) = P f (Xn,θ /n) is a polynomial in θ .

(ii) Suppose | f | ≤ M , for a constant M . For a fixed ε, invoke (uniform) continuity
to find a δ > 0 such that | f (s) − f (t)| ≤ ε whenever |s − t | ≤ δ, for all s, t
in [0, 1]. Show that

| f (x/n) − f (θ)| ≤ ε + 2M{ |(x/n) − θ | > δ} ≤ ε + 2M |(x/n) − θ |2
δ2

.

(iii) Deduce that sup0≤θ≤1 |pn(θ) − f (θ)| < 2ε for n large enough. That is, deduce
that f (·) can be uniformly approximated by polynomials over the range [0, 1],
a result known as the Weierstrass approximation theorem.

[26] Extend the approximation result from Example <46> to the case of an infinite
measure µ on B(Rk) that gives finite measure to each compact set. Hint: Let B
be a closed ball of radius large enough to ensure µ| f |B < ε. Write µB for the
restriction of µ to B. Invoke the result from the Example to find a g in C0 such
that µB | f − g| < ε. Find C0 functions 1 ≥ hi ↓ B. Consider approximations ghi

for i large enough.

13. Notes

I recommend Royden (1968) as a good source for measure theory. The books of
Ash (1972) and Dudley (1989) are also excellent references, for both measure theory
and probability. Dudley’s book contains particularly interesting historical notes.

See Hawkins (1979, Chapter 4) to appreciate the subtlety of the idea of a
negligible set.

The result from Problem [10] is often attributed to (Pratt 1960), but, as he noted
(in his 1966 Acknowledgment of Priority), it is actually much older.

Theorem <38> (the π–λ theorem for generating classes of sets) is often
attributed to Dynkin (1960, Section 1.1), although Sierpiński (1928) had earlier
proved a slightly stronger result (covering generation of sigma-rings, not just sigma-
fields). I adapted the analogous result for classes of functions, Theorem <45>, from
Protter (1990, page 7) and Dellacherie & Meyer (1978, page 14). Compare with
the “Sierpiński Stability Lemma” for sets, and the “Functional Sierpiński Lemma”
presented by Hoffmann-Jørgensen (1994, pages 8, 54, 60).
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