Please attempt at least the starred problems.

- *(1.1) Please send to me (david.pollard@yale.edu) an email giving your year, your major or graduate department, and noting whether you have taken (or are in the process of taking) real analysis, measure theory, or any probability course.
- *(1.2) Let $(\mathcal{X}, \mathcal{A}, \mu)$ be a measure space. Suppose $\{A_i : i \in \mathbb{N}\} \subset \mathcal{A}$ with $A_i \uparrow A$ as $i \to \infty$. (That is, $A_i \subseteq A_{i+1}$ for all i and $A = \bigcup_{i \in \mathbb{N}} A_i$.)
 - (i) Show that $A = A_1 \cup \bigcup_{i \in \mathbb{N}} (A_{i+1} \setminus A_i)$. [Remember: $E \setminus F = E \cap F^c$.]
 - (ii) Deduce that $\mu A_i \uparrow \mu A$.
 - (iii) Suppose $\{B_i : i \in \mathbb{N}\} \subset \mathcal{A}$ with $B_i \downarrow B$ as $i \to \infty$. Show that $B_1 \backslash B_i \uparrow B_1 \backslash B$. If $\mu B_1 < \infty$, deduce that $\mu B_i \downarrow \mu B$.
- *(1.3) Let μ be a finite measure on the Borel sigma-field $\mathcal{B}(\mathcal{X})$ of a metric space \mathcal{X} . [You may take $\mathcal{X} = \mathbb{R}^2$ if you are not yet comfortable with general metric spaces.] Show that for each $\epsilon > 0$ and each $B \in \mathcal{B}(\mathcal{X})$ there exists a closed set F_{ϵ} and an open set G_{ϵ} for which $F_{\epsilon} \subseteq B \subseteq G_{\epsilon}$ and $\mu(G_{\epsilon} \setminus F_{\epsilon}) < \epsilon$.
- (1.4) Suppose T maps a set \mathfrak{X} into a set \mathfrak{Y} . For $B \subseteq \mathfrak{Y}$ define $T^{-1}B := \{x \in \mathfrak{X} : T(x) \in B\}$. For $A \subseteq \mathfrak{X}$ define $T(A) := \{T(x) : x \in A\}$. Some of the following assertions are true and some are false.

$T\left(\cup_i A_i\right) = \cup_i T(A_i)$	and	$T^{-1}\left(\cup_i B_i\right) = \cup_i T^{-1}(B_i)$
$T\left(\cap_i A_i\right) = \cap_i T(A_i)$	and	$T^{-1}\left(\cap_{i} B_{i}\right) = \cap_{i} T^{-1}(B_{i})$
$T\left(A^{c}\right) = \left(T\left(A\right)\right)^{c}$	and	$T^{-1}\left(B^{c}\right) = \left(T^{-1}\left(B\right)\right)^{c}$
$T^{-1}\left(T(A)\right) = A$	and	$T\left(T^{-1}(B)\right) = B$

Provide counterexamples for each of the false assertions.

- (1.5) The set R = {-∞} ∪ R ∪ {∞} is called the *extended real line*. Write A for the sigma-field on R generated by B(R) together with the two singleton sets {-∞} and {∞}.
 - (i) Show that \mathcal{A} is also generated by $\mathcal{E} = \{ [-\infty, t] : t \in \mathbb{R} \}.$
 - (ii) Let $\psi : [-1, +1] \to \overline{\mathbb{R}}$ be defined by $\psi(-1) = -\infty$ and $\psi(+1) = +\infty$ and

$$\psi(x) = \frac{x}{1 - |x|}$$
 for $|x| < 1$.

Show that $B \in \mathcal{A}$ if and only if $\psi^{-1}(B) \in \mathcal{B}[0, 1]$.

(1.6) Follow these steps to show that there cannot exist a translation invariant (countably additive) probability measure defined for the collection of all subsets of (0, 1]. For *a* and *y* in (0, 1] define

$$x \oplus y = \begin{cases} x + y & \text{if } x + y \le 1\\ x + y - 1 & \text{if } x + y > 1 \end{cases}$$

For $A \subseteq (0, 1]$ and $x \in (0, 1]$ define $A \oplus x = \{y \oplus x : y \in A\}$. Suppose μ is a measure that is defined for all subsets of (0, 1] for which $\mu(A \oplus x) = \mu A$ for all A and x. Define $\Omega = \{q \in (0, 1] : q \text{ is rational }\}$. Define an equivalence relation on (0, 1] by $x \sim y$ if $x = y \oplus r$ for some $r \in \mathbb{R}$. Let A be a set that contains exactly one point from each equivalence class.

- (i) Show that A ⊕ r and A ⊕ s are disjoint sets if r and s are distinct elements of Q and that
 (0, 1] = ∪_{r∈Q} (A ⊕ r). Hint: The argument is much neater if you identify (0, 1] with the perimeter of a circle of circumference 1.
- (ii) Deduce that $\mu(0, 1] = \sum_{r \in Q} \mu(A \oplus r)$.
- (iii) Show that

$$\mu(0,1] = \begin{cases} \infty & \text{if } \mu A > 0\\ 0 & \text{if } \mu A = 0 \end{cases}$$

Deduce that μ cannot be a probability measure (or any other non-trivial, finite measure).