*(10.1) Suppose μ and \mathbb{P} are probability measures on a *countably generated* sigma-field \mathcal{F}_{∞} on a set Ω . That is, $\mathcal{F}_{\infty} = \sigma \{F_i : i \in \mathbb{N}\}$. Let π_n denote the partition of Ω generated by the sets F_1, \ldots, F_n . (That is, each nonempty member of π_n is of the form $\bigcap_{i \le n} A_i$ with $A_i = F_i$ or $A_i = F_i^c$.) Define

$$\begin{split} X_n(\omega) &= \sum_{B \in \pi_n} \{ \omega \in B, \mathbb{P}B > 0 \} \frac{\mu B}{\mathbb{P}B} \\ Z_n(\omega) &= \sum_{B \in \pi_n} \{ \omega \in B, \lambda B > 0 \} \frac{\mu B}{\lambda B} \quad \text{where } \lambda = \frac{1}{2}(\mu + \mathbb{P}). \end{split}$$

- (i) Define $\Omega_n = \bigcup \{B \in \pi_n : \mathbb{P}B > 0\}$. Show that $\mathbb{P}\Omega_n = 1$ for each *n*.
- (ii) Define $\mathcal{F}_n = \sigma(\pi_n) = \sigma\{F_i : i = 1, ..., n\}$. Show that $\{(X_n, \mathcal{F}_n) : n \in \mathbb{N}\}$ is a \mathbb{P} -supermartingale, which converges \mathbb{P} almost surely to some random variable X_{∞} .
- (iii) Show that $\{(Z_n, \mathcal{F}_n) : n \in \mathbb{N}\}$ is a λ -martingale, which converges λ almost surely to a random variable Z_{∞} . Show also that Z_{∞} is a version of the density $d\mu/d\lambda$.
- (iv) Show that there is an \mathcal{F}_{∞} -measurable subset Ω_0 of $\bigcap_{n \in \mathbb{N}} \Omega_n$ with $\mathbb{P}\Omega_0 = 1$ such that

$$X_n(\omega) \to X_\infty(\omega) < \infty$$
 and $\frac{2X_n(\omega)}{1 + X_n(\omega)} = Z_n(\omega)$ for each $\omega \in \Omega_0$.

(v) Deduce that

$$\frac{2X_{\infty}}{1+X_{\infty}}\Omega_0 = Z_{\infty}\Omega_0 \qquad \text{a.e. } [\lambda]$$

(vi) Deduce that

$$\mathbb{P}\frac{X_{\infty}\Omega_{0}F}{1+X_{\infty}} = \mu \frac{\Omega_{0}F}{1+X_{\infty}} \quad \text{for each } F \in \mathcal{F}_{\infty}.$$

(vii) Deduce that

$$\mathbb{P}X_{\infty}\Omega_0 f = \mu\Omega_0 f$$
 for each $f \in \mathcal{M}^+(\mathcal{F}_{\infty})$.

- (viii) Conclude that X_{∞} is a version of the density $d\mu_0/d\mathbb{P}$, where μ_0 is the part of μ that is absolutely continuous with respect to \mathbb{P} .
- *(10.2) For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, suppose \mathcal{G} is a sub-sigma-field of \mathcal{F} for which either $\mathbb{P}G = 0$ or $\mathbb{P}G = 1$ for every $G \in \mathcal{G}$.
 - (i) For each $Z \in \mathcal{M}^+(\mathcal{G})$, show that there exists a constant $c \in [0, \infty]$ for which $\mathbb{P}\{Z = c\} = 1$. Hint: Consider $\sup\{t \in \mathbb{R} : \mathbb{P}\{Z \ge t\} = 1$.
 - (ii) For each $X \in \mathcal{M}^+(\mathcal{F})$, show that $\mathbb{P}(X \mid \mathcal{G}) = \mathbb{P}X$ a.e. $[\mathbb{P}]$.
- (10.3) (generalized STL for positive supermartingales) UGMTP Problem 6.6. Hint: Start from what you know about $\sigma \wedge n$ and $\tau \wedge n$ then justify a passage to the limit.
- (10.4) UGMTP Problem 6.4. You might prefer to prove the assertion only for $X \in \mathcal{M}^+$.