- *(11.1) (closure and interior) UGMTP Problem 7.3.
- *(11.2) (CMT via Fubini) UGMTP Problem 7.10.
- *(11.3) Suppose the random k-vectors $\{X_n : n \in \mathbb{N}\}$ converge in distribution to X. Let $\{A_n\}$ be a sequence of random $k \times k$ matrices that converges in probability to a nonrandom matrix A, and let $\{B_n\}$ be a sequence of random k-vectors that converges in probability to a nonrandom vector B. Show that $A_nX_n + B_n \rightsquigarrow AX + B$. Hint: Consider functions of the random object (X_n, A_n, B_n) , which you might like to rearrange as a random $(k + k^2 + k)$ -vector.
- *(11.4) (cid of MVN) UGMTP Problem 7.12, part (ii) only.
- (11.5) Suppose $\psi_i : \mathcal{Y} \to \mathcal{Z}_i$ and \mathcal{Z}_i is equipped with a sigma-field \mathcal{C}_i , for each *i* in some index set \mathfrak{I} . Define \mathcal{B} as the smallest sigma-field on \mathcal{Y} for which each ψ_i is $\mathcal{B} \setminus \mathcal{C}_i$ -measurable.
 - (i) Show that \mathcal{B} is generated by the collection of sets $\bigcup_{i \in \mathcal{I}} \mathcal{E}_i$, where $\mathcal{E}_i := \{\psi_i^{-1}(C) : C \in \mathcal{C}_i\}$.
 - (ii) Suppose $T : \Omega \to \mathcal{Y}$ and that \mathcal{F} is a sigma-field on Ω . Show that T is $\mathcal{F}\setminus\mathcal{B}$ -measurable if and only if $\psi_i \circ T$ is $\mathcal{F}\setminus\mathcal{C}_i$ -measurable for each $i \in \mathcal{I}$.
 - (iii) Specialize to the case where $\mathcal{I} = \mathbb{N}$ and $\mathcal{Y} = \mathbb{R}^{\mathbb{N}}$, with ψ_i as the *i*th coordinate map: if $x = (x_i : i \in \mathbb{N}) \in \mathbb{R}^{\mathbb{N}}$ then $\psi_i(x) = x_i$. Suppose $T(\omega) = (X_1(\omega), X_2(\omega), \ldots)$ for some sequence of $\mathcal{F} \setminus \mathcal{B}(\mathbb{R})$ -measurable real random variables X_1, X_2, \ldots Show that T is $\mathcal{F} \setminus \mathcal{B}$ -measurable.
 - (iv) Show that $\sigma(T) = \{T^{-1}(B) : B \in \mathcal{B}\}.$
 - (v) Show that $\sigma(T) = \mathfrak{F}_{\infty}$, the smallest sigma-field on Ω for which X_i is $\mathfrak{F}_{\infty} \setminus \mathcal{B}(\mathbb{R})$ -measurable for each $i \in \mathbb{N}$.
 - (vi) Show that the elements of $\mathcal{M}^+(\Omega, \mathcal{F}_\infty)$ are precisely those functions of the form $g(T(\omega))$ for some $g \in \mathcal{M}^+(\mathbb{R}^N, \mathcal{B})$. Hint: Start with the bounded random variables.