Please do not work as teams for this final homework sheet. Partial or incomplete solutions are acceptable.

- *(12.1) Suppose $\{X_n : n \in \mathbb{N}_0\}$ and $\{Y_n : n \in \mathbb{N}_0\}$ are both martingales for the same filtration $\{\mathcal{F}_n : n \in \mathbb{N}_0\}$. Suppose $\sigma : \Omega \to \mathbb{N}_0 \cup \{\infty\}$ is a random variable for which $X_n = Y_n$ on the set $\{\sigma = n\}$, for each n in \mathbb{N}_0 . Define $Z_n = X_n \{\sigma \le n\} + Y_n \{\sigma > n\}$.
 - (i) If σ is a stopping time, show that $\{Z_n : n \in \mathbb{N}_0\}$ is a martingale.
 - (ii) Suppose $Y_n \equiv 0$ and $\{X_n\}$ is a positive martingale, which converges almost surely to a random variable X_{∞} with $\mathbb{P}\{X_{\infty} > 0\} > 0$. Define $\sigma = \sup\{n : X_n = 0\}$. Show that $\{Z_n\}$ is not a martingale.
- *(12.2) (CLT without finite moments) UGMTP Problem 7.21.
- *(12.3) Suppose μ is a finite measure on $\mathcal{B}(\mathbb{R})$ and $\kappa(\cdot)$ is an infinitely differentiable function which is zero outside the interval (-1, +1). Show that the function $g(t) = \mu^x \kappa(x+t)$ is also infinitely differentiable.
- *(12.4) Suppose $\{X_n : n \in \mathbb{N}\}\$ is a sequence of integer-valued random variables for which there exist constants $a_n \in \mathbb{R}$ and $b_n > 0$ such that $Z_n := (X_n a_n)/b_n \rightsquigarrow N(0, 1)$. Show that we must have $b_n \to \infty$. Hint: For each $\delta > 0$ show that both $\mathbb{P}\{1 < Z_n \le 1 + \delta\}$ and $\mathbb{P}\{1 + \delta < Z_n \le 1 + 2\delta\}$ must converge to nonzero values. What does that tell you about b_n ?
- *(12.5) Suppose P and P_n , for $n \in \mathbb{N}$, are probability measures on $\mathcal{B}(\mathbb{R}^2)$. Let \mathcal{R} denote the set of all rectangles $(a, b] \times (c, d]$. Suppose $P_n R \to PR$ for each R in the set $\mathcal{R}_P = \{R \in \mathcal{R} : P(\partial R) = 0\}$. Show that $P_n \to P$ by expanding on the following sketch of a proof.
 - (i) Show that both the sets $\{x \in \mathbb{R} : P(\{x\} \times \mathbb{R}) > 0\}$ and $\{y \in \mathbb{R} : P(\mathbb{R} \times \{y\}) > 0\}$ are, at worst, countably infinite.
 - (ii) Show that there is a countable subset \mathcal{R}_0 of \mathcal{R}_P with the property that

$$G = \bigcup \{ R \in \mathcal{R}_0 : G \supset R \in \mathcal{R}_0 \}$$

for every open subset G of \mathbb{R}^2 .

- (iii) Show that $P_n D \to PD$ for every set D expressible as a finite union of \mathcal{R}_0 sets.
- (iv) Deduce that $\liminf_n P_n G \ge PG$ for each open G.
- (v) Deduce that $P_n D \to PD$ for each Borel set D with $P(\partial D) = 0$.
- (vi) What then?