Please attempt at least the starred problems.

- *(5.1) Suppose \mathcal{E}_i is a collection of subsets of \mathcal{X}_i with $\mathcal{X}_i \in \mathcal{E}_i$, for i = 1, 2. Show that $\sigma(\mathcal{E}_1 \times \mathcal{E}_2) = \sigma(\mathcal{E}_1) \otimes \sigma(\mathcal{E}_2)$, as sigma-fields on $\mathcal{X}_1 \times \mathcal{X}_2$.
- *(5.2) Let \mathcal{X} be a set equipped with a countably generated sigma-field \mathcal{A} . That is, $\mathcal{A} = \sigma(\mathcal{E})$ where $\mathcal{E} = \{E_i : i \in \mathbb{N}\}$. Suppose also that $\{x\} \in \mathcal{A}$ for each x in \mathcal{X} . Without loss of generality, suppose \mathcal{E} is stable under complements.
 - (i) Show that $\{x\} = \cap \{E_i : x \in E_i\}$ for each x in \mathcal{X} .
 - (ii) Show that $\Delta^c := \{(x_1, x_2) \in \mathfrak{X}^2 : x_1 \neq x_2\} = \bigcup_{i \in \mathbb{N}} E_i \times E_i^c \in \mathcal{A} \otimes \mathcal{A}.$
- *(5.3) (2*k*th moment) UGMTP Problem 4.24, but only for k = 3.
- *(5.4) (generalized maximal) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and $A_1, \ldots, A_n, B_1, \ldots, B_n$ be sets in \mathcal{F} with the following property: for some constant β ,

 $\mathbb{P}B_i D \ge \beta \mathbb{P}D$ for all $D \in \sigma\{A_1, \ldots, A_i\}$, for each *i*.

Show that $\beta \mathbb{P} \cup_{i \leq n} A_i \leq \mathbb{P} \cup_{i \leq n} (A_i B_i)$.

(5.5) (completeness of \mathcal{L}^p) UGMTP Problem 2.19.