Please attempt at least the starred problems.

- *(6.1) (ϵ - δ on field for absolute continuity) UGMTP Problem 3.6. Don't assume \mathcal{E} is countable. Instead, appeal to the result from Example 2.5.
- *(6.2) (Hellinger product) UGMTP Problem 4.18.
- *(6.3) (Radon-Nikodym) Suppose μ and ν are finite measures with $\nu \ll \mu$. Modify the argument from UGMTP 2.7 (the Lebesgue Decomposition) to show that ν has a density Δ with respect to μ with $0 \le \Delta(x) < \infty$ for every x. I want you to give a complete proof. Do not just deduce the result as a special case from UGMTP 2.7.
- (6.4) (Compare with UGMTP Problem 2.19.) For a measure space (X, A, μ), suppose {f_n : n ∈ N} is a Cauchy sequence in L^p(μ), for some fixed p > 1, that is, ||f_n f_m||_p → 0 as min(m, n) → ∞. Show that there exists a real-valued function f in L^p(μ) for which ||f_n f||_p → 0 as n → ∞, by the following steps.
 - (i) Show that there is no loss of generality in supposing $f_n \ge 0$ for all n. Hint: Consider f_n^{\pm} .
 - (ii) For all nonnegative constants α and β , show that

$$|\alpha - \beta|^p \le |\alpha^p - \beta^p| \le p|\alpha - \beta| \left(\alpha^{p-1} + \beta^{p-1}\right).$$

Hint: Reduce to the case $\alpha > \beta = 1$.

- (iii) Show that $\sup_{n \in \mathbb{N}} ||f_n||_p < \infty$.
- (iv) Show that $\{f_n^p : n \in \mathbb{N}\}$ is a Cauchy sequence in $\mathcal{L}^1(\mu)$. Hint: Hölder.
- (v) Show that there exists a function g in $\mathcal{L}^{p}(\mu)$ with $g \ge 0$ and $\mu |f_{n}^{p} g^{p}| \to 0$.
- (vi) Show that $||f_n g||_p \to 0$.
- (vii) Anything more to do?