- *(7.1) Let ν and μ be finite measures on a sigma-field of subsets of \mathfrak{X} , with $\nu \ll \mu$. Let T be an $\mathcal{A}\setminus\mathcal{B}$ -measurable map into a set \mathcal{T} equipped with a sigma-field \mathcal{B} .
 - (i) Show that $T\nu \ll T\mu$. Write g for the density $d(T\nu)/d(T\mu)$.
 - (ii) Let v_0 and μ_0 denote the restrictions of the two measures to the sigma-field $\sigma(T)$. Show that $g \circ T$ is a version of the density $dv_0/d\mu_0$.
- *(7.2) Let $\mathbb{P} = P \otimes P$, where P is a probability measure on $\mathcal{B}(\mathbb{R})$ possibly with atoms (that is, we might have $P\{x\} > 0$ for some x.) Let $T(x, y) = \max(x, y)$. Find $d\mathbb{Q}/dP$ where \mathbb{Q} is the distribution of T under \mathbb{P} . Hint: be very careful at the atoms of P.
- *(7.3) (Pythagoras in \mathcal{L}^2) UGMTP Problem 5.9. Note: the conditional variance, $\operatorname{var}(X \mid \mathcal{G})$, is defined as $\mathbb{P}((X Y)^2 \mid \mathcal{G})$ where $Y = \mathbb{P}(X \mid \mathcal{G})$.