Statistics 330/600 2006: Sheet 8

- *(8.1) (Conditional Jensen) UGMTP Problem 5.13.
- *(8.2) Suppose \mathbb{P} and \mathbb{P}_{θ} , for $\theta \in \Theta$, are probability measures defined on a sigma-field \mathfrak{F} . Suppose also that \mathfrak{F}_0 is a sub-sigma-field of \mathfrak{F} and that there exists versions of densities

$$\frac{d\mathbb{P}_{\theta}}{d\mathbb{P}} = g_{\theta}(\omega)h(\omega) \quad \text{with } g_{\theta} \in \mathcal{M}^{+}(\mathcal{F}_{0}) \text{ for each } \theta \text{ and } h \in \mathcal{M}^{+}(\mathcal{F}).$$

For each X in $\mathcal{M}^+(\mathcal{F})$, show that there exists a Y in $\mathcal{M}^+(\mathcal{F}_0)$, with Y not depending on θ , such that

$$\mathbb{P}_{\theta}(X \mid \mathfrak{F}_0) = Y$$
 a.e. $[\mathbb{P}_{\theta}]$ for every θ .

Hint: For $H := \mathbb{P}(h \mid \mathfrak{F}_0)$, consider when $\mathbb{P}(Xh \mid \mathfrak{F}_0)/H(\omega)$ is well defined.

(8.3) (9 as information) UGMTP Problem 5.5. For part (i), show that for every G in 9 either G or G^c is countable.