Statistics 330/600 2006: Sheet 9

*(9.1) Suppose $\{\xi_i : i \in \mathbb{N}\}$ are independent random variables with $\mathbb{P}\{\xi_i = 1\} = 1/2 = \mathbb{P}\{\xi_i = -1\}$, for each *i*. Suppose $X_0 \equiv 1$ and $X_n = X_0 + \xi_1 + \ldots + \xi_n$. Let $\mathcal{F}_n = \sigma\{X_0, \xi_1, \ldots, \xi_n\}$. Define

$$\sigma = \inf\{n : X_n = 0\}$$
 and $\tau = \inf\{n : X_n = 2\}$ and $Z_n = X_{n \wedge \sigma}$

- (i) Show that $\{(X_n, \mathcal{F}_n) : n \in \mathbb{N}_0\}$ is a martingale. Does $\{X_n\}$ converge almost surely?
- (ii) Show that $\{(Z_n, \mathcal{F}_n) : n \in \mathbb{N}_0\}$ is a positive martingale, which converges almost surely to some real-valued random variable Z_{∞} .
- (iii) From the facts that $|X_{n+1} X_n| = 1$ and $Z_{n+1} Z_n \to 0$ almost surely, deduce that $\sigma < \infty$ almost surely.
- (iv) Show that $\mathbb{P}X_{\tau}\{\tau < \infty\} \neq \mathbb{P}X_0$. Why does this fact not contradict the Stoppingg Time Lemma?
- *(9.2) Suppose W and X are nonnegative random variables for which there exists nonnegative constants β and C for which

$$t\mathbb{P}\{W > \beta t\} \le C\mathbb{P}Z\{W > t\} \qquad \text{for all } t > 0.$$

Show that

$$\|W\|_p \le \frac{Cp\beta^p}{p-1} \|Z\|_p$$

for each p > 1 for which $\mathbb{P}W^p < \infty$.

(9.3) (Doob for p > 1) UGMTP Problem 6.9. You do not have to reprove any results established in other Problems on this Sheet.