- *(10.1) Suppose $\{\xi_i : i \in \mathbb{N}\}$ are independent random variables with $\mathbb{P}\{\xi_i = 1\} = 1/2 = \mathbb{P}\{\xi_i = -1\}$, for each *i*. Suppose $X_0 \equiv 1$ and $X_n = X_0 + \xi_1 + \ldots + \xi_n$. Let $\mathcal{F}_n = \sigma\{X_0, \xi_1, \ldots, \xi_n\}$. Define $\tau = \inf\{n : X_n = 0\}$ and $Z_n = X_{\tau \wedge n}$.
 - (i) Show that $\{(X_n, \mathcal{F}_n) : n \in \mathbb{N}_0\}$ is a martingale. Does $\{X_n\}$ converge almost surely?
 - (ii) Show that $\{(Z_n, \mathcal{F}_n) : n \in \mathbb{N}_0\}$ is a positive martingale.
 - (iii) Show that $Z_{n+1} Z_n \rightarrow 0$ almost surely. Hint: What do you know about sequences of real numbers that converge to finite limits?
 - (iv) From part (iii) and the fact that $|X_{n+1} X_n| = 1$, deduce that $\tau < \infty$ almost surely.
 - (v) Show that $\mathbb{P}X_{\tau}\{\tau < \infty\} \neq \mathbb{P}X_0$. Why does this fact not contradict the Stopping Time Lemma?
- (10.2) Suppose W and X are nonnegative random variables with $||Z||_p < \infty$ for some p > 1. Suppose also that there exists positive constants β and C for which

 $t\mathbb{P}\{W > \beta t\} \le C\mathbb{P}Z\{W > t\} \qquad \text{for all } t > 0.$

Show that $||W||_p \leq Cp\beta^p ||Z||_p/(p-1)$. To make things slightly easier, I will let you assume that $||W||_p < \infty$. For a truly virtuoso effort, you might also show that the finiteness of $||W||_p$ actually follows from the finiteness of $||Z||_p$.

- *(10.3) (Doob's \mathcal{L}^p maximal inequality) UGMTP Problem 6.9. If you solve HW 10.2, you may appeal to that problem to eliminate some of the steps suggested in the book.
- (10.4) Suppose $\{(X_n, \mathcal{F}_n) : n \in \mathbb{N}_0\}$ is a martingale with $\sup_n \mathbb{P}X_n^2 < \infty$. As usual, write X_n as a sum of martingale differences, $X_n = X_0 + \sum_{i \le n} \xi_i$.

For this problem I do not want you to appeal to upcrossing results or convergence results for positive supermartingales. The problem is intended as an explanation of an alternative way to prove convergence.

- (i) For each *n* and *m* with $n < m < \infty$, show that $\mathbb{P}|X_m X_n|^2 = \sum_{i=n+1}^m \sigma_i^2$, where $\sigma_i^2 := \mathbb{P}\xi_i^2$.
- (ii) For $n < m \le \infty$, define $\Delta_{n,m} = \sup_{n < i \le m} |X_i X_m|$. Use Doob's \mathcal{L}^2 maximal inequality (with *m* finite) to show that $\mathbb{P}\Delta_{n,\infty}^2 \to 0$ as $n \to \infty$.
- (iii) Show that $\Delta_{n,\infty} \to 0$ almost surely as $n \to \infty$. Hint: $\Delta_{n,\infty}$ decreases as *n* increases.
- (iv) Show that there exists an X_{∞} in $\mathcal{L}^2(\Omega, \mathfrak{F}_{\infty}, \mathbb{P})$ for which $X_n \to X_{\infty}$ almost surely and $||X_n X_{\infty}||_2 \to 0$.