*(11.1) Let \mathbb{P} be Lebesgue measure on the Borel sigma-field of (0, 1]. Let X be a nonnegative, \mathbb{P} integrable random variable defined on (0, 1]. Define \mathcal{F}_n to be the sigma-field generated by the
intervals

$$J_{i,n} := \left(\frac{i-1}{2^n}, \frac{i}{2^n}\right]$$
 for $i = 1, 2, \dots, 2^n$.

- (i) Show that $X_n := \mathbb{P}_{\mathcal{F}_n} X$ is of the form $\sum_{i=1}^{2^n} x_{i,n} \{ \omega \in J_{i,n} \}$ for numbers $x_{i,n}$ that you specify.
- (ii) Show that {(X_n, 𝔅_n) : n ∈ ℕ} is a martingale, which converges almost surely to an integrable limit X_∞.
- (iii) Use Fatou's lemma to show that $\mathbb{P}X \geq \mathbb{P}X_{\infty}$.
- (iv) Temporarily suppose X is bounded above by a constant. Show that $\mathbb{P}|X_n X_{\infty}| \to 0$. Deduce that $\mathbb{P}XJ_{i,k} = \mathbb{P}X_{\infty}J_{i,k}$ for each $J_{i,k}$. Explain why it follows that $X = X_{\infty}$ almost surely.
- (v) Now remove the temporary assumption of boundedness. For each M in \mathbb{R}^+ , show that

$$X_n \ge X_{n,M} := \mathbb{P}_{\mathcal{F}_n}(X \wedge M) \to X \wedge M$$
 almost surely.

- (vi) Deduce, via (iii) and (v), that $X_{\infty} = X$ almost surely.
- (11.2) For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, suppose \mathcal{G} is a sub-sigma-field of \mathcal{F} for which either $\mathbb{P}G = 0$ or $\mathbb{P}G = 1$ for every $G \in \mathcal{G}$.
 - (i) For each $Z \in \mathcal{M}^+(\mathcal{G})$, show that there exists a constant $c \in [0, \infty]$ for which $\mathbb{P}\{Z = c\} = 1$.
 - (ii) For each $X \in \mathcal{M}^+(\mathcal{F})$, show that $\mathbb{P}(X \mid \mathcal{G}) = \mathbb{P}X$ a.e. $[\mathbb{P}]$.
- *(11.3) (properties of d(x, B) in a metric space) UGMTP Problem 7.3.