- *(12.1) (Fubini and cts a.s.) UGMTP Problem 7.10.
- (12.2) Let g be a nonnegative, lower semicontinuous function on a metric space \mathfrak{X} (see UGMTP page 172). Suppose P, P_1, P_2, \ldots are probability measures on $\mathfrak{B}(\mathfrak{X})$ for which $P_n \rightsquigarrow P$. Adapt the method from the previous Problem to give an alternative proof of UGMTP Theorem 7.8. That is, use Fubini and the fact that $\liminf_{n\to\infty} P_n G \ge PG$ for each open set G to show that $\liminf_{n\to\infty} P_n g \ge Pg$.
- *(12.3) Suppose $P, P_1, P_2, ...$ are probability measures on $\mathcal{B}(\mathbb{R}^k)$ for which $P_n f \to Pf$ for every Lipschitz function f on \mathbb{R}^k with compact support. Show that $P_n \to P$. Hint: Show that there exists a Lipschitz function h with compact support for which $0 \le h \le 1$ and $Ph > 1 \epsilon$. Consider functions fh with $f \in BL(\mathbb{R}^k)$.
- (12.4) Suppose K is an infinitely differentiable function on \mathbb{R} with compact support. Let f be a bounded, $\mathcal{B}(\mathbb{R})$ -measurable function. Show that the function $g(t) = \int_{-\infty}^{\infty} f(x)K(x+t) dx$ is also infinitely differentiable.
- *(12.5) Suppose $P, P_1, P_2, ...$ are probability measures on $\mathcal{B}(\mathbb{R})$ for which $P_n(-\infty, x] \to P(-\infty, x]$ for every x in some dense subset T of \mathbb{R} . Show that $P_n \rightsquigarrow P$ by the following steps.
 - (i) For each $\epsilon > 0$ show that there exist points $x_1 < x_2 < \ldots < x_k$ in T for which $\max_{i=2}^{k} |x_i x_{i-1}| < \epsilon$ and $P(-\infty, x_1] < \epsilon$ and $P(x_k, \infty) < \epsilon$.
 - (ii) Given $f \in BL(\mathbb{R})$, define a step function $f_k(x) := \sum_{i=2}^k f(x_i) \{x_{i-1} < x \le x_i\}$. Show that $P_n f_k \to P f_k$ for each k and that both $P | f f_k |$ and $\limsup_n P_n | f f_k |$ are suitably small.
 - (iii) Complete the proof.
- (12.6) For each *n*, suppose X_n and Y_n are independent, real random variables. Suppose also that $X_n \rightsquigarrow P$ and $Y_n \rightsquigarrow Q$, for some probability measures *P* and *Q* on $\mathcal{B}(\mathbb{R})$. Without using any Fourier arguments, show that (X_n, Y_n) converges in distribution, as a random element of \mathbb{R}^2 , to $P \otimes Q$. Hint: Adapt the argument from the previous Problem to show that \mathbb{R}^2 can be partitioned into countably many rectangles of the form $J = (a, b] \times (c, d]$, each with diameter less than ϵ , and for each of which $\mathbb{P}\{(X_n, Y_n) \in J\} \rightarrow P \otimes QJ$. Then consider $\mathbb{P}f(X_n, Y_n)$ for a Lipschitz function *f* with compact support.