Please attempt at least the starred problems.

- *(4.1) Suppose μ_1, μ_2, μ_3 are measures on the same sigma-field \mathcal{A} on a set \mathfrak{X} . Suppose μ_2 has density g_2 with respect to μ_1 and μ_3 has density g_3 with respect to μ_2 , with $g_2, g_3 \in \mathcal{M}^+(\mathfrak{X}, \mathcal{A})$. Find the density of μ_3 with respect to μ_1 .
- *(4.2) Suppose \mathcal{A} is a sigma-field on a set \mathcal{X} and μ is a measure on \mathcal{A} . Suppose that g_1, g_2 are functions in $\mathcal{M}^+(\mathcal{X}, \mathcal{A})$ for which $\mu(g_1 f) = \mu(g_2 f)$ for all $f \in \mathcal{M}^+(\mathcal{X}, \mathcal{A})$. Show that $g_1 = g_2$ almost everywhere $[\mu]$. Hint: Consider $f = \{g_1 > r > g_2\}$ for various constants r.
- *(4.3) Let P_{θ} denote the $N(\theta, 1)$ probability measure on $\mathcal{B}(\mathcal{R})$, for each $\theta \in \mathbb{R}$. Show that $dP_{\theta}/dP_0 = \exp(x\theta \theta^2/2)$. *Remark: It would be more precise to add an almost everywhere* $[P_0]$ *to the last sentence.*
- *(4.4) Let \mathcal{G}_0 denote the set of all bounded, nonnegative, nondecreasing, continuous functions on \mathbb{R} . Suppose P and Q are two probability measures on $\mathcal{B}(\mathbb{R})$ for which Pg = Qg for each $g \in \mathcal{G}_0$. Show that P = Q (as measures on the Borel sigma-field).
- (4.5) UGMTP Problem 2.12.