Please attempt at least the starred problems and at least one of the unstarred problems.

- *(5.1) The following facts are sometimes useful if you need to establish product-measurability of sets or functions.
 - (i) Show that B(R²) = B(R) ⊗ B(R). Hint: For the inclusion ⊆, show that every open subset of R² can be written as a countable union of sets of the form (a, b) × (c, d).
 - (ii) Show that $\{(x, y) \in \mathbb{R}^2 : x = y\} \in \mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$.
 - (iii) Show that every continuous function $f : \mathbb{R}^2 \to \mathbb{R}$ is $\mathcal{B}(\mathbb{R}) \otimes \mathcal{B}(\mathbb{R})$ -measurable.
- *(5.2) (Compare with UGMTP Problem 2.19.) For a measure space $(\mathfrak{X}, \mathcal{A}, \mu)$, suppose $\{f_n : n \in \mathbb{N}\}$ is a Cauchy sequence in $\mathcal{L}^p(\mu)$, for some fixed p > 1, that is, $||f_n f_m||_p \to 0$ as $\min(m, n) \to \infty$. Show that there exists a real-valued function f in $\mathcal{L}^p(\mu)$ for which $||f_n f||_p \to 0$ as $n \to \infty$, by the following steps.
 - (i) Show that there is no loss of generality in supposing $f_n \ge 0$ for all n. Hint: Note that $|a^+ b^+| \le |a b|$ for all $a, b \in \mathbb{R}$.
 - (ii) For all $\alpha, \beta \in \mathbb{R}^+$, show that

$$|\alpha - \beta|^p \le |\alpha^p - \beta^p| \le p|\alpha - \beta| \left(\alpha^{p-1} + \beta^{p-1}\right).$$

Hint: Reduce to the case $\alpha > \beta = 1$.

- (iii) Show that $\sup_{n \in \mathbb{N}} \|f_n\|_p < \infty$.
- (iv) Show that $\{f_n^p : n \in \mathbb{N}\}$ is a Cauchy sequence in $\mathcal{L}^1(\mu)$. Hint: Hölder.
- (v) Show that there exists a function g in $\mathcal{L}^p(\mu)$ with $g \ge 0$ and $\mu |f_n^p g^p| \to 0$.
- (vi) Show that $||f_n g||_p \to 0$.
- (vii) Anything more to do?
- (5.3) Suppose X and Y are independent random variables for which $\mathbb{P}{X + Y = 1} = 1$. Show that there exists some constant C for which X = C almost surely.
- (5.4) Let *P* be a probability measure on $\mathcal{B}(\mathbb{R})$ with distribution function $F(\cdot)$ and corresponding quantile function $q(\cdot)$. Let $m_0 = q(1/2)$. Show that $P[m_0, \infty) \ge 1/2$ and $P(-\infty, m_0] \ge 1/2$. Explain why m_0 is the smallest value for which both these inequalities hold. The value m_0 is called a median for *P*.
- (5.5) Suppose Z = X + Y, with X and Y independent random variables. Let m be a median for the distribution of Y. Show that $\mathbb{P}\{X \ge x\} \le 2\mathbb{P}\{Z \ge x + m\}$ for each real x.