Please attempt the starred problems and at least one of the unstarred problems.

- *(6.1) Let \mathcal{A}_i be a sigma-field on a set \mathfrak{X}_i , for i = 1, 2, 3. Show that $\sigma((\mathcal{A}_1 \otimes \mathcal{A}_2) \times \mathcal{A}_3) = \sigma(\mathcal{A}_1 \times \mathcal{A}_2 \times \mathcal{A}_3)$.
- *(6.2) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. For i = 1, ..., 5 let \mathcal{A}_i be a sigma-field on a set \mathcal{X}_i and S_i be an $\mathcal{F} \setminus \mathcal{A}_i$ measurable map from Ω into \mathcal{X}_i . Suppose $S_1, ..., S_5$ are independent. Define $T : \Omega \to \mathcal{X} := \mathcal{X}_1 \times \mathcal{X}_2 \times \mathcal{X}_3$ by $T(\omega) = (S_1(\omega), S_2(\omega), S_3(\omega))$. Equip \mathcal{X} with its product sigma-field $\mathcal{A}_1 \otimes \mathcal{A}_2 \otimes \mathcal{A}_3$. Show that T, S_4, S_5 are independent.
- (6.3) Suppose $f \in \mathcal{L}^1(\mathcal{X}, \mathcal{A}, \mu)$. For each fixed p > 1 show that $\sum_{i \in \mathbb{N}} \mu \frac{|f|^p \{|f| \le i\}}{i^p} < \infty$.
- (6.4) Let \mathcal{A} be a sigma-field on a set \mathcal{X} and \mathcal{B} be a sigma-field on a set \mathcal{Y} . Let T be an $\mathcal{A}\setminus\mathcal{B}$ -measurable map from \mathcal{X} into \mathcal{Y} . Suppose ν and μ are finite measures on \mathcal{A} , with $\nu \ll \mu$. (That is, if $A \in \mathcal{A}$ and $\mu A = 0$ then $\nu A = 0$.)
 - (i) Show that $T\nu \ll T\mu$. Write g for the density $d(T\nu)/d(T\mu)$.
 - (ii) Let v_0 and μ_0 denote the restrictions of the two measures to the sigma-field $\sigma(T)$. Show that $g \circ T$ is a version of the density $dv_0/d\mu_0$.