Please attempt the starred problems and at least two of the unstarred problems.

- *(7.1) UGMTP Problem 3.12, part (i). You could also attempt part (ii) if you read the first two pages of Section 3.3.
- *(7.2) Let \mathcal{E} be a field on a set \mathcal{X} . That is, $\emptyset \in \mathcal{E}$ and \mathcal{E} is stable under the formation of complements, finite unions, and finite intersections. Suppose μ and ν are finite measures on $\sigma(\mathcal{E})$. Define $\lambda = \mu + \nu$.
 - (i) From UGMTP Example 2.5, for each B ∈ σ(E) and each ε > 0 there exists an increasing sequence of sets {E_n : n ∈ N} ⊆ E for which B ⊆ ∪_{n∈N}E_n and λ (∪_{n∈N}E_n) < ε + λB. Deduce that there exists a set E ∈ E for which λ|B − E| < ε.</p>
 - (ii) Suppose that for each $\epsilon > 0$ there exists a $\delta > 0$ such that $\nu E < \epsilon$ for every set $E \in \mathcal{E}$ with $\mu E < \delta$. Show that $\nu \ll \mu$, as measures on $\sigma(\mathcal{E})$. Hint: If $\mu B = 0$ find an $E \in \mathcal{E}$ with $\lambda |B - E| < \delta \land \epsilon$.
 - (iii) Let μ be Lebesgue measure on $\mathcal{B}(0, 1]$ and ν be a finite measure on $\mathcal{B}(0, 1]$ with distribution function F. Suppose that for each $\epsilon > 0$ there exists a $\delta > 0$ with the property that $\sum_{i} (F(b_i) F(a_i)) < \epsilon$ for every finite set of points $0 \le a_1 < b_1 < a_2 < b_2 < \ldots < a_n < b_n \le 1$ for which $\sum_{i} (b_i a_i) < \delta$. Show that $\nu \ll \mu$.
 - (iv) For the v and F from the previous part, show that there exists a nonnegative, Lebesgue-integrable function f for which $F(x) = \int_0^x f(t) dt$ for each x in (0, 1].
- (7.3) UGMTP Problem 3.16.
- (7.4) UGMTP Problem 3.17.
- (7.5) Let ν be a finite measure (on a sigma-field \mathcal{A}) for which $\nu = \nu_1 + \lambda_1 = \nu_2 + \lambda_2$, where each ν_i is dominated by a fixed sigma-finite measure μ and each λ_i is singular with respect to μ . Show that $\nu_1 = \nu_2$ and $\lambda_1 = \lambda_2$. Hint: Show that there exists a set $A \in \mathcal{A}$ for which $\mu A^c = 0$ and $\lambda_1 A + \lambda_2 A = 0$. Consider $\nu(fA)$ for $f \in \mathcal{M}^+$.