- *(8.1) UGMTP Problem 2.3.
- *(8.2) Let P be a probability measure on $\mathcal{B}(\mathbb{R})$ with no atoms, that is, $P\{t\} = 0$ for every real t. The corresponding distribution function $F(t) := P(-\infty, t]$ is continuous, but not necessarily absolutely continuous. Please DO NOT ASSUME that P has a density with respect to Lebesgue measure.

Let $\mathbb{P} = P \otimes P \otimes P$, a probability measure defined on $\mathcal{B}(\mathbb{R}^3)$. Define $T : \mathbb{R}^3 \to \mathbb{R}$ by T(x, y, z) =median(x, y, z). That is, T gives the middle value when x, y, z are arranged in increasing order. Let Q be the distribution of T under \mathbb{P} . Show that dQ/dP = 6F(t)(1 - F(t)). Hint: Show that $Q(-\infty, t] = 6\mathbb{P}\{T \le t, x < y < z\}$.